Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jayme R. McReynolds is active.

Publication


Featured researches published by Jayme R. McReynolds.


The Journal of Neuroscience | 2004

The Basolateral Amygdala Interacts with the Medial Prefrontal Cortex in Regulating Glucocorticoid Effects on Working Memory Impairment

Benno Roozendaal; Jayme R. McReynolds; James L. McGaugh

Previous findings indicate that the basolateral complex of the amygdala (BLA) interacts with other brain regions in regulating stress hormone effects on memory functions. Lesions of the BLA or infusions of a β-adrenoceptor antagonist into the BLA block glucocorticoid effects on both memory consolidation and retrieval when administered either systemically or directly into the hippocampus. The present experiments examined BLA and β-adrenoceptor involvement in regulating glucocorticoid effects on spatial working memory, a task that depends on the medial prefrontal cortex (mPFC). Male Sprague Dawley rats with bilateral sham- or NMDA-induced lesions of the BLA received either corticosterone (1.0 or 3.0 mg/kg, i.p.) systemically or the specific glucocorticoid receptor agonist 11β,17β-dihydroxy-6,21-dimethyl-17α-pregna-4,6-trien-20yn-3-one (RU 28362; 3.0 or 10.0 ng in 0.5 μl) into the mPFC shortly before testing on a delayed alternation task in a T-maze. Both glucocorticoid treatments induced comparable impairments in working memory performance in sham-lesioned controls. Although lesions of the BLA alone did not affect working memory, BLA lesions blocked the impairment induced by either corticosterone or RU 28362. Likewise, systemic injections of the centrally acting β-adrenoceptor antagonist propranolol (2.0 mg/kg, i.p.) given before testing prevented corticosterone-induced working memory impairment. These findings indicate that BLA activity is essential for enabling glucocorticoid effects in the mPFC on working memory and suggest that stress hormone-induced modulation of working memory involves noradrenergic activation.


The Journal of Neuroscience | 2009

Glucocorticoid Effects on Memory Consolidation Depend on Functional Interactions between the Medial Prefrontal Cortex and Basolateral Amygdala

Benno Roozendaal; Jayme R. McReynolds; Eddy A. Van der Zee; Sangkwan Lee; James L. McGaugh; Christa K. McIntyre

Considerable evidence indicates that the basolateral complex of the amygdala (BLA) interacts with efferent brain regions in mediating glucocorticoid effects on memory consolidation. Here, we investigated whether glucocorticoid influences on the consolidation of memory for emotionally arousing training depend on functional interactions between the BLA and the medial prefrontal cortex (mPFC), a brain region involved in higher-order cognitive and affective processing. The glucocorticoid receptor (GR) agonist 11β,17β-dihydroxy-6,21-dimethyl-17α-pregna-4,6-trien-20yn-3-one (RU 28362) administered unilaterally into the left mPFC of male Sprague Dawley rats immediately after inhibitory avoidance training enhanced 48 h retention performance. An ipsilateral, but not contralateral, lesion of the BLA blocked the memory enhancement. In a second experiment, RU 28362 infused into the mPFC after inhibitory avoidance training increased BLA levels of phosphorylated extracellular signal-regulated kinase 1/2 (pErk1/2). Blockade of this pErk1/2 activity in the BLA with the mitogen-activated protein kinase kinase inhibitor PD98059 [2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one] prevented the memory enhancement, suggesting that GR agonist administration into the mPFC enhances memory consolidation via modulation of BLA activity. Conversely, GR agonist infusions administered into the BLA posttraining increased pErk1/2 levels in the mPFC in regulating memory consolidation. Moreover, as assessed with a two-phase inhibitory avoidance procedure designed to separate modulatory influences on memory of context and footshock, posttraining GR agonist infusions into either the BLA or mPFC enhanced memory of the contextual as well as aversive information acquired during inhibitory avoidance training. These findings indicate that glucocorticoid effects on memory consolidation depend on bidirectional interactions between the BLA and mPFC.


Neurobiology of Learning and Memory | 2010

Memory-enhancing corticosterone treatment increases amygdala norepinephrine and Arc protein expression in hippocampal synaptic fractions

Jayme R. McReynolds; Kyle M. Donowho; Amin Abdi; James L. McGaugh; Benno Roozendaal; Christa K. McIntyre

Considerable evidence indicates that glucocorticoid hormones enhance the consolidation of memory for emotionally arousing events through interactions with the noradrenergic system of the basolateral complex of the amygdala (BLA). We previously reported that intra-BLA administration of a beta-adrenoceptor agonist immediately after inhibitory avoidance training enhanced memory consolidation and increased hippocampal expression of the protein product of the immediate early gene activity-regulated cytoskeletal-associated protein (Arc). In the present experiments corticosterone (3 mg/kg, i.p.) was administered to male Sprague-Dawley rats immediately after inhibitory avoidance training to examine effects on long-term memory, amygdala norepinephrine levels, and hippocampal Arc expression. Corticosterone increased amygdala norepinephrine levels 15 min after inhibitory avoidance training, as assessed by in vivo microdialysis, and enhanced memory tested at 48 h. Corticosterone treatment also increased expression of Arc protein in hippocampal synaptic tissue. The elevation in BLA norepinephrine appears to participate in corticosterone-influenced modulation of hippocampal Arc expression as intra-BLA blockade of beta-adrenoceptors with propranolol (0.5 microg/0.2 microL) attenuated the corticosterone-induced synaptic Arc expression in the hippocampus. These findings indicate that noradrenergic activity at BLA beta-adrenoceptors is involved in corticosterone-induced enhancement of memory consolidation and expression of the synaptic-plasticity-related protein Arc in the hippocampus.


The Journal of Neuroscience | 2013

Corticosterone Acts in the Nucleus Accumbens to Enhance Dopamine Signaling and Potentiate Reinstatement of Cocaine Seeking

Evan N. Graf; Robert A. Wheeler; David A. Baker; Amanda L. Ebben; Jonathan E. Hill; Jayme R. McReynolds; Mykel A. Robble; Oliver Vranjkovic; Daniel S. Wheeler; John R. Mantsch; Paul J. Gasser

Stressful life events are important contributors to relapse in recovering cocaine addicts, but the mechanisms by which they influence motivational systems are poorly understood. Studies suggest that stress may “set the stage” for relapse by increasing the sensitivity of brain reward circuits to drug-associated stimuli. We examined the effects of stress and corticosterone on behavioral and neurochemical responses of rats to a cocaine prime after cocaine self-administration and extinction. Exposure of rats to acute electric footshock stress did not by itself reinstate drug-seeking behavior but potentiated reinstatement in response to a subthreshold dose of cocaine. This effect of stress was not observed in adrenalectomized animals, and was reproduced in nonstressed animals by administration of corticosterone at a dose that reproduced stress-induced plasma levels. Pretreatment with the glucocorticoid receptor antagonist RU38486 did not block the corticosterone effect. Corticosterone potentiated cocaine-induced increases in extracellular dopamine in the nucleus accumbens (NAc), and pharmacological blockade of NAc dopamine receptors blocked corticosterone-induced potentiation of reinstatement. Intra-accumbens administration of corticosterone reproduced the behavioral effects of stress and systemic corticosterone. Corticosterone treatment acutely decreased NAc dopamine clearance measured by fast-scan cyclic voltammetry, suggesting that inhibition of uptake2-mediated dopamine clearance may underlie corticosterone effects. Consistent with this hypothesis, intra-accumbens administration of the uptake2 inhibitor normetanephrine potentiated cocaine-induced reinstatement. Expression of organic cation transporter 3, a corticosterone-sensitive uptake2 transporter, was detected on NAc neurons. These findings reveal a novel mechanism by which stress hormones can rapidly regulate dopamine signaling and contribute to the impact of stress on drug intake.


Stress | 2014

Neurobiological mechanisms underlying relapse to cocaine use: contributions of CRF and noradrenergic systems and regulation by glucocorticoids.

Jayme R. McReynolds; David F. Peña; Jordan M. Blacktop; John R. Mantsch

Abstract Considering its pervasive and uncontrollable influence in drug addicts, understanding the neurobiological processes through which stress contributes to drug use is a critical goal for addiction researchers and will likely be important for the development of effective medications aimed at relapse prevention. In this paper, we review work from our laboratory and others focused on determining the neurobiological mechanisms that underlie and contribute to stress-induced relapse of cocaine use with an emphasis on the actions of corticotropin-releasing factor in the ventral tegmental area (VTA) and a key pathway from the bed nucleus of the stria terminalis to the VTA that is regulated by norepinephrine and beta adrenergic receptors. Additionally, we discuss work suggesting that the influence of stress in cocaine addiction changes and intensifies with repeated cocaine use in an intake-dependent manner and examine the potential role of glucocorticoid hormones in the underlying drug-induced neuroadaptations. It is our hope that research in this area will inform clinical practice and medication development aimed at minimizing the contribution of stress to the addiction cycle, thereby improving treatment outcomes and reducing the societal costs of addiction.


Frontiers in Behavioral Neuroscience | 2012

Memory-enhancing intra-basolateral amygdala infusions of clenbuterol increase Arc and CaMKIIα protein expression in the rostral anterior cingulate cortex

Crystal M. Holloway-Erickson; Jayme R. McReynolds; Christa K. McIntyre

Activation of β-adrenoceptors in the basolateral complex of the amygdala (BLA) modulates memory through interactions with multiple memory systems. The cellular mechanisms for this interaction remain unresolved. Memory-modulating BLA manipulations influence expression of the protein product of the immediate early gene activity-regulated cytoskeletal-associated protein (Arc) in the dorsal hippocampus, and hippocampal expression of Arc protein is critically involved in memory consolidation and long-term potentiation. The present studies examined whether this influence of the BLA is specific to the hippocampus and to Arc protein. Like the hippocampus, the rostral portion of the anterior cingulate cortex (rACC) is involved in the consolidation of inhibitory avoidance (IA) memory, and IA training increases Arc protein in the rACC. Because the BLA interacts with the rACC in the consolidation of IA memory, the rACC is a potential candidate for further studies of BLA modulation of synaptic plasticity. The alpha isoform of the Calcium/Calmodulin-dependent protein kinase II (CaMKIIα) and the immediate early gene c-Fos are involved in long-term potentiation and memory. Both Arc and CaMKIIα proteins can be translated in isolated synapses, where the mRNA is localized, but c-Fos protein remains in the soma. To examine the influence of memory-modulating manipulations of the BLA on expression of these memory and plasticity-associated proteins in the rACC, male Sprague–Dawley rats were trained on an IA task and given intra-BLA infusions of either clenbuterol or lidocaine immediately after training. Findings suggest that noradrenergic stimulation of the BLA may modulate memory consolidation through effects on both synaptic proteins Arc and CaMKIIα, but not the somatic protein c-Fos. Furthermore, protein changes observed in the rACC following BLA manipulations suggest that the influence of the BLA on synaptic proteins is not limited to those in the dorsal hippocampus.


Reviews in The Neurosciences | 2012

Emotional modulation of the synapse.

Jayme R. McReynolds; Christa K. McIntyre

Abstract Acute stress and emotional arousal can enhance the consolidation of long-term memories in a manner that is dependent on β-adrenoceptor activation in the basolateral complex of the amygdala (BLA). The BLA interacts with multiple memory systems in the brain to modulate a variety of classes of memory. However, the synaptic mechanisms of this interaction remain unresolved. This review describes the evidence of modulation of memory and synaptic plasticity produced by emotional arousal, stress hormones, and pharmacological or electrophysiological stimulation of the amygdala. The amygdala modulation of local translation and/or degradation of the synaptic plasticity-related proteins, activity-regulated cytoskeletal-associated protein and calcium/calmodulin-dependent protein kinase IIα, is offered as a potential mechanism for the rapid memory consolidation that is associated with emotionally arousing events. This model shares features with synaptic tagging and the emotional tagging hypotheses.


Neurobiology of Learning and Memory | 2014

Corticosterone-induced enhancement of memory and synaptic Arc protein in the medial prefrontal cortex

Jayme R. McReynolds; Crystal M. Holloway-Erickson; Tulja U. Parmar; Christa K. McIntyre

Acute administration of the stress hormone corticosterone enhances memory consolidation in a manner that is dependent upon the modulatory effects of the basolateral complex of the amygdala (BLA). Posttraining administration of corticosterone increases expression of the activity-regulated cytoskeletal-associated protein (Arc) in hippocampal synaptic-enriched fractions. Interference with hippocampal Arc expression impairs memory, suggesting that the corticosterone-induced increase in hippocampal Arc plays a role in the memory enhancing effect of the hormone. Blockade of β-adrenoceptors in the BLA attenuates the corticosterone-induced increase in hippocampal Arc expression and blocks corticosterone-induced memory enhancement. To determine whether posttraining corticosterone treatment affects Arc protein expression in synapses of other areas of the brain that are involved in memory processing, a memory-enhancing dose of corticosterone was administered to rats immediately after inhibitory avoidance training. As seen in the hippocampus, Arc protein expression was increased in synaptic fractions taken from the prelimbic region of the medial prefrontal cortex (mPFC). Blockade of Arc protein expression significantly impaired memory, indicating that the protein is necessary in the mPFC for long-term memory formation. To test the hypothesis that blockade of β-adrenoceptors in the BLA would block the effect of systemic corticosterone on memory and attenuate mPFC Arc expression, as it does in the hippocampus, posttraining intra-BLA microinfusions of the β-adrenoceptor antagonist propranolol were given concurrently with the systemic corticosterone injection. Although this treatment blocked corticosterone-induced memory enhancement, it increased corticosterone-induced Arc protein expression in mPFC synaptic fractions. These findings suggest that the BLA mediates stress hormone effects on memory by participating in the negative or positive regulation of corticosterone-induced synaptic plasticity in efferent brain regions.


Neuropsychopharmacology | 2017

Corticosterone Potentiation of Cocaine-Induced Reinstatement of Conditioned Place Preference in Mice is Mediated by Blockade of the Organic Cation Transporter 3

Jayme R. McReynolds; Analisa Taylor; Oliver Vranjkovic; Terra Ambrosius; Olivia Derricks; Brittany Nino; Beliz Kurtoglu; Robert A. Wheeler; David A. Baker; Paul J. Gasser; John R. Mantsch

The mechanisms by which stressful life events increase the risk of relapse in recovering cocaine addicts are not well understood. We previously reported that stress, via elevated corticosterone, potentiates cocaine-primed reinstatement of cocaine seeking following self-administration in rats and that this potentiation appears to involve corticosterone-induced blockade of dopamine clearance via the organic cation transporter 3 (OCT3). In the present study, we use a conditioned place preference/reinstatement paradigm in mice to directly test the hypothesis that corticosterone potentiates cocaine-primed reinstatement by blockade of OCT3. Consistent with our findings following self-administration in rats, pretreatment of male C57/BL6 mice with corticosterone (using a dose that reproduced stress-level plasma concentrations) potentiated cocaine-primed reinstatement of extinguished cocaine-induced conditioned place preference. Corticosterone failed to re-establish extinguished preference alone but produced a leftward shift in the dose–response curve for cocaine-primed reinstatement. A similar potentiating effect was observed upon pretreatment of mice with the non-glucocorticoid OCT3 blocker, normetanephrine. To determine the role of OCT3 blockade in these effects, we examined the abilities of corticosterone and normetanephrine to potentiate cocaine-primed reinstatement in OCT3-deficient and wild-type mice. Conditioned place preference, extinction and reinstatement of extinguished preference in response to low-dose cocaine administration did not differ between genotypes. However, corticosterone and normetanephrine failed to potentiate cocaine-primed reinstatement in OCT3-deficient mice. Together, these data provide the first direct evidence that the interaction of corticosterone with OCT3 mediates corticosterone effects on drug-seeking behavior and establish OCT3 function as an important determinant of susceptibility to cocaine use.


Neurobiology of Stress | 2018

What does the Fos say? Using Fos-based approaches to understand the contribution of stress to substance use disorders

Jayme R. McReynolds; John P. Christianson; Jordan M. Blacktop; John R. Mantsch

Despite extensive research efforts, drug addiction persists as a largely unmet medical need. Perhaps the biggest challenge for treating addiction is the high rate of recidivism. While many factors can promote relapse in abstinent drug users, the contribution of stress is particularly problematic, as stress is uncontrollable and pervasive in the lives of those struggling with addiction. Thus, understanding the neurocircuitry that underlies the influence of stress on drug seeking is critical for guiding treatment. Preclinical research aimed at defining this neurocircuitry has, in part, relied upon the use of experimental approaches that allow visualization of cellular and circuit activity that corresponds to stressor-induced drug seeking in rodent relapse models. Much of what we have learned about the mechanisms that mediate stressor-induced relapse has been informed by studies that have used the expression of the immediate early gene, cfos, or its protein product, Fos, as post-mortem activity markers. In this review we provide an overview of the rodent models used to study stressor-induced relapse and briefly summarize what is known about the underlying neurocircuitry before describing the use of cfos/Fos-based approaches. In addition to reviewing findings obtained using this approach, its advantages and limitations are considered. Moreover, new techniques that leverage the expression profile of cfos to tag and manipulate cells based on their activity patterns are discussed. The intent of the review is to guide the interpretation of old and design of new studies that utilize cfos/Fos-based strategies to study the neurocircuitry that contributes to stress-related drug use.

Collaboration


Dive into the Jayme R. McReynolds's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christa K. McIntyre

University of Texas at Dallas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cecilia J. Hillard

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge