Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jayna Raghwani is active.

Publication


Featured researches published by Jayna Raghwani.


Nature | 2009

Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic

Gavin J. D. Smith; Dhanasekaran Vijaykrishna; Justin Bahl; Samantha Lycett; Michael Worobey; Oliver G. Pybus; Siu Kit Ma; C. L. Cheung; Jayna Raghwani; Samir Bhatt; J. S. Malik Peiris; Yi Guan; Andrew Rambaut

In March and early April 2009, a new swine-origin influenza A (H1N1) virus (S-OIV) emerged in Mexico and the United States. During the first few weeks of surveillance, the virus spread worldwide to 30 countries (as of May 11) by human-to-human transmission, causing the World Health Organization to raise its pandemic alert to level 5 of 6. This virus has the potential to develop into the first influenza pandemic of the twenty-first century. Here we use evolutionary analysis to estimate the timescale of the origins and the early development of the S-OIV epidemic. We show that it was derived from several viruses circulating in swine, and that the initial transmission to humans occurred several months before recognition of the outbreak. A phylogenetic estimate of the gaps in genetic surveillance indicates a long period of unsampled ancestry before the S-OIV outbreak, suggesting that the reassortment of swine lineages may have occurred years before emergence in humans, and that the multiple genetic ancestry of S-OIV is not indicative of an artificial origin. Furthermore, the unsampled history of the epidemic means that the nature and location of the genetically closest swine viruses reveal little about the immediate origin of the epidemic, despite the fact that we included a panel of closely related and previously unpublished swine influenza isolates. Our results highlight the need for systematic surveillance of influenza in swine, and provide evidence that the mixing of new genetic elements in swine can result in the emergence of viruses with pandemic potential in humans.


Nature | 2017

Establishment and cryptic transmission of Zika virus in Brazil and the Americas

Nuno Rodrigues Faria; Josh Quick; Julien Thézé; J. G. de Jesus; Marta Giovanetti; Moritz U. G. Kraemer; Sarah C. Hill; Allison Black; A. C. da Costa; Luciano Franco; Sandro Patroca da Silva; Chieh-Hsi Wu; Jayna Raghwani; Simon Cauchemez; L. du Plessis; M. P. Verotti; W. K. de Oliveira; E. H. Carmo; Giovanini Evelim Coelho; A. C. F. S. Santelli; L. C. Vinhal; C. M. Henriques; Jared T. Simpson; Matthew Loose; Kristian G. Andersen; Nathan D. Grubaugh; Sneha Somasekar; Charles Y. Chiu; José Esteban Muñoz-Medina; César González-Bonilla

Transmission of Zika virus (ZIKV) in the Americas was first confirmed in May 2015 in northeast Brazil. Brazil has had the highest number of reported ZIKV cases worldwide (more than 200,000 by 24 December 2016) and the most cases associated with microcephaly and other birth defects (2,366 confirmed by 31 December 2016). Since the initial detection of ZIKV in Brazil, more than 45 countries in the Americas have reported local ZIKV transmission, with 24 of these reporting severe ZIKV-associated disease. However, the origin and epidemic history of ZIKV in Brazil and the Americas remain poorly understood, despite the value of this information for interpreting observed trends in reported microcephaly. Here we address this issue by generating 54 complete or partial ZIKV genomes, mostly from Brazil, and reporting data generated by a mobile genomics laboratory that travelled across northeast Brazil in 2016. One sequence represents the earliest confirmed ZIKV infection in Brazil. Analyses of viral genomes with ecological and epidemiological data yield an estimate that ZIKV was present in northeast Brazil by February 2014 and is likely to have disseminated from there, nationally and internationally, before the first detection of ZIKV in the Americas. Estimated dates for the international spread of ZIKV from Brazil indicate the duration of pre-detection cryptic transmission in recipient regions. The role of northeast Brazil in the establishment of ZIKV in the Americas is further supported by geographic analysis of ZIKV transmission potential and by estimates of the basic reproduction number of the virus.


PLOS Pathogens | 2011

Endemic Dengue Associated with the Co-Circulation of Multiple Viral Lineages and Localized Density-Dependent Transmission

Jayna Raghwani; Andrew Rambaut; Edward C. Holmes; Vu Thi Ty Hang; Tran Tinh Hien; Jeremy Farrar; Bridget Wills; Niall J. Lennon; Bruce W. Birren; Matthew R. Henn; Cameron P. Simmons

Dengue is one of the most important infectious diseases of humans and has spread throughout much of the tropical and subtropical world. Despite this widespread dispersal, the determinants of dengue transmission in endemic populations are not well understood, although essential for virus control. To address this issue we performed a phylogeographic analysis of 751 complete genome sequences of dengue 1 virus (DENV-1) sampled from both rural (Dong Thap) and urban (Ho Chi Minh City) populations in southern Viet Nam during the period 2003–2008. We show that DENV-1 in Viet Nam exhibits strong spatial clustering, with likely importation from Cambodia on multiple occasions. Notably, multiple lineages of DENV-1 co-circulated in Ho Chi Minh City. That these lineages emerged at approximately the same time and dispersed over similar spatial regions suggests that they are of broadly equivalent fitness. We also observed an important relationship between the density of the human host population and the dispersion rate of dengue, such that DENV-1 tends to move from urban to rural populations, and that densely populated regions within Ho Chi Minh City act as major transmission foci. Despite these fluid dynamics, the dispersion rates of DENV-1 are relatively low, particularly in Ho Chi Minh City where the virus moves less than an average of 20 km/year. These low rates suggest a major role for mosquito-mediated dispersal, such that DENV-1 does not need to move great distances to infect a new host when there are abundant susceptibles, and imply that control measures should be directed toward the most densely populated urban environments.


Journal of Virology | 2012

Origin and Evolution of the Unique Hepatitis C Virus Circulating Recombinant Form 2k/1b

Jayna Raghwani; X.V. Thomas; S.M. Koekkoek; Janke Schinkel; R. Molenkamp; van de T.J.W. Laar; Yutaka Takebe; Yasuhito Tanaka; M. Mizokami; Andrew Rambaut; Oliver G. Pybus

ABSTRACT Since its initial identification in St. Petersburg, Russia, the recombinant hepatitis C virus (HCV) 2k/1b has been isolated from several countries throughout Eurasia. The 2k/1b strain is the only recombinant HCV to have spread widely, raising questions about the epidemiological background in which it first appeared. In order to further understand the circumstances by which HCV recombinants might be formed and spread, we estimated the date of the recombination event that generated the 2k/1b strain using a Bayesian phylogenetic approach. Our study incorporates newly isolated 2k/1b strains from Amsterdam, The Netherlands, and has employed a hierarchical Bayesian framework to combine information from different genomic regions. We estimate that 2k/1b originated sometime between 1923 and 1956, substantially before the first detection of the strain in 1999. The timescale and the geographic spread of 2k/1b suggest that it originated in the former Soviet Union at about the time that the worlds first centralized national blood transfusion and storage service was being established. We also reconstructed the epidemic history of 2k/1b using coalescent theory-based methods, matching patterns previously reported for other epidemic HCV subtypes. This study demonstrates the practicality of jointly estimating dates of recombination from flanking regions of the breakpoint and further illustrates that rare genetic-exchange events can be particularly informative about the underlying epidemiological processes.


Virology | 2014

Phylogeography and epidemic history of hepatitis C virus genotype 4 in Africa

James Iles; Jayna Raghwani; G. L. Abby Harrison; Jacques Pépin; Cyrille F. Djoko; Ubald Tamoufe; Matthew LeBreton; Bradley S. Schneider; Joseph N. Fair; Felix M. Tshala; Patrick K. Kayembe; Jean Jacques Muyembe; Samuel Edidi-Basepeo; Nathan D. Wolfe; Peter Simmonds; Paul Klenerman; Oliver G. Pybus

HCV genotype 4 is prevalent in many African countries, yet little is known about the genotype׳s epidemic history on the continent. We present a comprehensive study of the molecular epidemiology of genotype 4. To address the deficit of data from the Democratic Republic of the Congo (DRC) we PCR amplified 60 new HCV isolates from the DRC, resulting in 33 core- and 48 NS5B-region sequences. Our data, together with genotype 4 database sequences, were analysed using Bayesian phylogenetic approaches. We find three well-supported intra-genotypic lineages and estimate that the genotype 4 common ancestor existed around 1733 (1650–1805). We show that genotype 4 originated in central Africa and that multiple lineages have been exported to north Africa since ~1850, including subtype 4a which dominates the epidemic in Egypt. We speculate on the causes of the historical intra-continental spread of genotype 4, including population movements during World War 2.


The Journal of Infectious Diseases | 2016

The Evolution and Transmission of Epidemic GII.17 Noroviruses

Jing Lu; Lin Fang; Huanying Zheng; Jiaqian Lao; Fen Yang; Limei Sun; Jianpeng Xiao; Jinyan Lin; Tie Song; Tao Ni; Jayna Raghwani; Changwen Ke; Nuno Rodrigues Faria; Thomas A. Bowden; Oliver G. Pybus; Hui Li

BACKGROUND In recent decades, the GII.4 norovirus genotype has predominated in epidemics worldwide and been associated with an increased rate of evolutionary change. In 2014, a novel GII.17 variant emerged and persisted, causing large outbreaks of gastroenteritis in China and sporadic infections globally. The origin, evolution, and transmission history of this new variant are largely unknown. METHODS We generated 103 full capsid and 8 whole-genome sequences of GII.17 strains collected between August 2013 and November 2015 in Guangdong, China. Phylogenetic analyses were performed by integrating our data with those for all publically available GII.17 sequences. RESULTS The novel emergent lineage GII.17_Kawasaki_2014 most likely originated from Africa around 2001 and evolved at a rate of 5.6 × 10(-3) substitutions/site/year. Within this lineage, a new variant containing several important amino acid changes emerged around August 2013 and caused extensive epidemics in 2014-2015. The phylodynamic and epidemic history of the GII.17_Kawasaki lineage shows similarities with the pattern observed for GII.4 norovirus evolution. Virus movements from Hong Kong to neighboring coastal cities were frequently observed. CONCLUSIONS Our results provide new insights into GII.17 norovirus evolution and transmission and highlight the potential for a rare norovirus genotype to rapidly replace existing strains and cause local epidemics.


Cell Reports | 2016

A Molecular-Level Account of the Antigenic Hantaviral Surface.

Sai Li; Ilona Rissanen; Antra Zeltina; Jussi Hepojoki; Jayna Raghwani; Karl Harlos; Oliver G. Pybus; Juha T. Huiskonen; Thomas A. Bowden

Summary Hantaviruses, a geographically diverse group of zoonotic pathogens, initiate cell infection through the concerted action of Gn and Gc viral surface glycoproteins. Here, we describe the high-resolution crystal structure of the antigenic ectodomain of Gn from Puumala hantavirus (PUUV), a causative agent of hemorrhagic fever with renal syndrome. Fitting of PUUV Gn into an electron cryomicroscopy reconstruction of intact Gn-Gc spike complexes from the closely related but non-pathogenic Tula hantavirus localized Gn tetramers to the membrane-distal surface of the virion. The accuracy of the fitting was corroborated by epitope mapping and genetic analysis of available PUUV sequences. Interestingly, Gn exhibits greater non-synonymous sequence diversity than the less accessible Gc, supporting a role of the host humoral immune response in exerting selective pressure on the virus surface. The fold of PUUV Gn is likely to be widely conserved across hantaviruses.


PLOS Pathogens | 2016

Exceptional Heterogeneity in Viral Evolutionary Dynamics Characterises Chronic Hepatitis C Virus Infection.

Jayna Raghwani; Rebecca Rose; Isabelle Sheridan; Philippe Lemey; Marc A. Suchard; T. Santantonio; Patrizia Farci; Paul Klenerman; Oliver G. Pybus

The treatment of HCV infection has seen significant progress, particularly since the approval of new direct-acting antiviral drugs. However these clinical achievements have been made despite an incomplete understanding of HCV replication and within-host evolution, especially compared with HIV-1. Here, we undertake a comprehensive analysis of HCV within-host evolution during chronic infection by investigating over 4000 viral sequences sampled longitudinally from 15 HCV-infected patients. We compare our HCV results to those from a well-studied HIV-1 cohort, revealing key differences in the evolutionary behaviour of these two chronic-infecting pathogens. Notably, we find an exceptional level of heterogeneity in the molecular evolution of HCV, both within and among infected individuals. Furthermore, these patterns are associated with the long-term maintenance of viral lineages within patients, which fluctuate in relative frequency in peripheral blood. Together, our findings demonstrate that HCV replication behavior is complex and likely comprises multiple viral subpopulations with distinct evolutionary dynamics. The presence of a structured viral population can explain apparent paradoxes in chronic HCV infection, such as rapid fluctuations in viral diversity and the reappearance of viral strains years after their initial detection.


Journal of Virology | 2014

Intercontinental Dispersal of HIV-1 Subtype B Associated with Transmission among Men Who Have Sex with Men in Japan

Yutaka Takebe; Yuki Naito; Jayna Raghwani; Esther Fearnhill; Takako Sano; Shigeru Kusagawa; Jean L. Mbisa; Hongyi Zhang; Tetsuro Matano; Andrew J. Brown; Oliver G. Pybus; David Dunn; Makiko Kondo

ABSTRACT Transmission clusters of HIV-1 subtype B uniquely associated with the epidemic among men who have sex with men (MSM) in East Asia have recently been identified. Using the Los Alamos HIV sequence database and the UK HIV drug resistance database, we explored possible links between HIV MSM epidemics in East Asia and the rest of the world by using phylogenetic and molecular clock analyses. We found that JP.MSM.B-1, a subtype B MSM variant that accounts for approximately one-third of the infections among Japanese MSM, was detected worldwide, in the United Kingdom (n = 13), mainland China (n = 3), the United States, Germany, Canada, and Taiwan (n = 1 each). Interestingly, 10 United Kingdom samples plus two from Germany and the United States formed a distinct monophyletic subgroup within JP.MSM.B-1. The estimated divergence times of JP.MSM.B-1 and the latter subgroup were ∼1989 and ∼1999, respectively. These dates suggest that JP.MSM.B-1 was circulating for many years in Japan among MSM before disseminating to other countries, most likely through global MSM networks. A significant number of other Asian MSM HIV lineages were also detected in the UK HIV drug resistance database. Our study provides insight into the regional and global dispersal of Asian MSM HIV lineages. Further study of these strains is warranted to elucidate viral migration and the interrelationship of HIV epidemics on a global scale. IMPORTANCE We previously identified several transmission clusters of HIV-1 subtype B uniquely associated with the epidemic among men who have sex with men (MSM) in East Asia. Using the Los Alamos HIV sequence database and the UK HIV drug resistance database, we explored the possible interplay of HIV MSM epidemics in the different geographic regions and found previously unrecognized interrelationships among the HIV-1 epidemics in East Asia, the United Kingdom, and the rest of the world. Our study provides insight into the regional and global dispersal of Asian MSM HIV lineages and highlights the importance of strengthening HIV monitoring efforts and the need for implementing effective control measures to reduce HIV transmission on a global scale.


Journal of Virology | 2014

Occurrence and reassortment of avian influenza A (H7N9) viruses derived from coinfected birds in China

Wei Liu; Hang Fan; Jayna Raghwani; Tommy Tsan-Yuk Lam; Jing Li; Oliver G. Pybus; Hongwu Yao; Ying Wo; Kun Liu; Xiaoping An; Guangqian Pei; Hao Li; Hong-Yu Wang; Jian-Jun Zhao; Tao Jiang; Mai-Juan Ma; Xian Xia; Yan-De Dong; Tong-Yan Zhao; Jia-Fu Jiang; Yinhui Yang; Yi Guan; Yigang Tong; Wu-Chun Cao

ABSTRACT Over the course of two waves of infection, H7N9 avian influenza A virus has caused 436 human infections and claimed 170 lives in China as of July 2014. To investigate the prevalence and genetic diversity of H7N9, we surveyed avian influenza viruses in poultry in Jiangsu province within the outbreak epicenter. We found frequent occurrence of H7N9/H9N2 coinfection in chickens. Molecular clock phylogenetic analysis confirms coinfection by H7N9/H9N2 viruses and also reveals that the identity of the H7N9 outbreak lineage is confounded by ongoing reassortment between outbreak viruses and diverse H9N2 viruses in domestic birds. Experimental inoculation of a coinfected sample in cell culture yielded two reassortant H7N9 strains with polymerase segments from the original H9N2 strain. Ongoing reassortment between the H7N9 outbreak lineage and diverse H9N2 viruses may generate new strains with the potential to infect humans, highlighting the need for continued viral surveillance in poultry and humans. IMPORTANCE We found frequent occurrence of H7N9/H9N2 coinfection in chickens. The H7N9 outbreak lineage is confounded by ongoing reassortment between H7N9 and H9N2 viruses. The importance of H9N2 viruses as the source of novel avian influenza virus infections in humans requires continuous attention.

Collaboration


Dive into the Jayna Raghwani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas A. Bowden

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar

Changwen Ke

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Jing Lu

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Astrid Gall

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Kellam

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

Jie Wu

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Lijun Liang

Centers for Disease Control and Prevention

View shared research outputs
Researchain Logo
Decentralizing Knowledge