Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jayprokas Chakrabarti is active.

Publication


Featured researches published by Jayprokas Chakrabarti.


Nucleic Acids Research | 2008

Cellular versus viral microRNAs in host–virus interaction

Zhumur Ghosh; Bibekanand Mallick; Jayprokas Chakrabarti

MicroRNAs (miRNAs) mark a new paradigm of RNA-directed gene expression regulation in a wide spectrum of biological systems. These small non-coding RNAs can contribute to the repertoire of host-pathogen interactions during viral infection. This interplay has important consequences, both for the virus and the host. There have been reported evidences of host-cellular miRNAs modulating the expression of various viral genes, thereby playing a pivotal role in the host–pathogen interaction network. In the hide-and-seek game between the pathogens and the infected host, viruses have evolved highly sophisticated gene-silencing mechanisms to evade host-immune response. Recent reports indicate that virus too encode miRNAs that protect them against cellular antiviral response. Furthermore, they may exploit the cellular miRNA pathway to their own advantage. Nevertheless, our increasing knowledge of the host–virus interaction at the molecular level should lead us toward possible explanations to viral tropism, latency and oncogenesis along with the development of an effective, durable and nontoxic antiviral therapy. Here, we summarize the recent updates on miRNA-induced gene-silencing mechanism, modulating host–virus interactions with a glimpse of the miRNA-based antiviral therapy for near future.


The Scientific World Journal | 2014

Competing Endogenous RNA: The Key to Posttranscriptional Regulation

Rituparno Sen; Suman Ghosal; Shaoli Das; Subrata Balti; Jayprokas Chakrabarti

Competing endogenous RNA, ceRNA, vie with messenger RNAs (mRNAs) for microRNAs (miRNAs) with shared miRNAs responses elements (MREs) and act as modulator of miRNA by influencing the available level of miRNA. It has recently been discovered that, apart from protein-coding ceRNAs, pseudogenes, long noncoding RNAs (lncRNAs), and circular RNAs act as miRNA “sponges” by sharing common MRE, inhibiting normal miRNA targeting activity on mRNA. These MRE sharing elements form the posttranscriptional ceRNA network to regulate mRNA expression. ceRNAs are widely implicated in many biological processes. Recent studies have identified ceRNAs associated with a number of diseases including cancer. This brief review focuses on the molecular mechanism of ceRNA as part of the complex post-transcriptional regulatory circuit in cell and the impact of ceRNAs in development and disease.


PLOS ONE | 2014

lnCeDB: database of human long noncoding RNA acting as competing endogenous RNA.

Shaoli Das; Suman Ghosal; Rituparno Sen; Jayprokas Chakrabarti

Long noncoding RNA (lncRNA) influences post-transcriptional regulation by interfering with the microRNA (miRNA) pathways, acting as competing endogenous RNA (ceRNA). These lncRNAs have miRNA responsive elements (MRE) in them, and control endogenous miRNAs available for binding with their target mRNAs, thus reducing the repression of these mRNAs. ln Ce DB provides a database of human lncRNAs (from GENCODE 19 version) that can potentially act as ceRNAs. The putative mRNA targets of human miRNAs and the targets mapped to AGO clipped regions are collected from TargetScan and StarBase respectively. The lncRNA targets of human miRNAs (up to GENCODE 11) are downloaded from miRCode database. miRNA targets on the rest of the GENCODE 19 lncRNAs are predicted by our algorithm for finding seed-matched target sites. These putative miRNA-lncRNA interactions are mapped to the Ago interacting regions within lncRNAs. To find out the likelihood of an lncRNA-mRNA pair for actually being ceRNA we take recourse to two methods. First, a ceRNA score is calculated from the ratio of the number of shared MREs between the pair with the total number of MREs of the individual candidate gene. Second, the P-value for each ceRNA pair is determined by hypergeometric test using the number of shared miRNAs between the ceRNA pair against the number of miRNAs interacting with the individual RNAs. Typically, in a pair of RNAs being targeted by common miRNA(s), there should be a correlation of expression so that the increase in level of one ceRNA results in the increased level of the other ceRNA. Near-equimolar concentration of the competing RNAs is associated with more profound ceRNA effect. In lnCeDB one can not only browse for lncRNA-mRNA pairs having common targeting miRNAs, but also compare the expression of the pair in 22 human tissues to estimate the chances of the pair for actually being ceRNAs. Availability: Downloadable freely from http://gyanxet-beta.com/lncedb/.


Stem Cells and Development | 2013

Long Noncoding RNAs: New Players in the Molecular Mechanism for Maintenance and Differentiation of Pluripotent Stem Cells

Suman Ghosal; Shaoli Das; Jayprokas Chakrabarti

Maintenance of the pluripotent state or differentiation of the pluripotent state into any germ layer depends on the factors that orchestrate expression of thousands of genes through epigenetic, transcriptional, and post-transcriptional regulation. Long noncoding RNAs (lncRNAs) are implicated in the complex molecular circuitry in the developmental processes. The ENCODE project has opened up new avenues for studying these lncRNA transcripts with the availability of new datasets for lncRNA annotation and regulation. Expression studies identified hundreds of long noncoding RNAs differentially expressed in the pluripotent state, and many of these lncRNAs are found to control the pluripotency and stemness in embryonic and induced pluripotent stem cells or, in the reverse way, promote differentiation of pluripotent cells. They are generally transcriptionally activated or repressed by pluripotency-associated transcription factors and function as molecular mediators of gene expression that determine the pluripotent state of the cell. They can act as molecular scaffolds or guides for the chromatin-modifying complexes to direct them to bind into specific genomic loci to impart a repressive or activating effect on gene expression, or they can transcriptionally or post-transcriptionally regulate gene expression by diverse molecular mechanisms. This review focuses on recent findings on the regulatory role of lncRNAs in two main aspects of pluripotency, namely, self renewal and differentiation into any lineage, and elucidates the underlying molecular mechanisms that are being uncovered lately.


Biochemical and Biophysical Research Communications | 2008

MicroRNA switches in Trypanosoma brucei

Bibekanand Mallick; Zhumur Ghosh; Jayprokas Chakrabarti

Trypanosoma brucei develops chronic infection in mammalian hosts due to a sophisticated strategy of antigenic variation of variant surface glycoprotein (VSG) coat to escape antibody-mediated lysis. MicroRNAs are a class of non-coding RNAs with presumed post-transcriptional regulatory activity. Homology based informatic approach is used to identify the microRNA (miRNA) genes of T. brucei and their target mRNAs. Our observation reveals a set of microRNAs targeting mRNAs corresponding to VSGs. Further, a number of miRNA hairpins have been found in clusters of multiple identical copies. The target proteins, 20S proteosome, GM6 and GRESAG 4.2 corresponding to these clustered miRNAs play essential role in trypanosomiasis. These snippets can act as genetic switches modulating host-parasite interaction and provide useful clue toward treatment of trypanosomiasis.


PLOS ONE | 2009

MicroRNome Analysis Unravels the Molecular Basis of SARS Infection in Bronchoalveolar Stem Cells

Bibekanand Mallick; Zhumur Ghosh; Jayprokas Chakrabarti

Severe acute respiratory syndrome (SARS), caused by the coronavirus SARS-CoV, is an acute infectious disease with significant mortality. A typical clinical feature associated with SARS is pulmonary fibrosis and associated lung failure. In the aftermath of the SARS epidemic, although significant progress towards understanding the underlying molecular mechanism of the infection has been made, a large gap still remains in our knowledge regarding how SARS-CoV interacts with the host cell at the onset of infection. The rapidly changing viral genome adds another variable to this equation. We have focused on a novel concept of microRNA (miRNA)–mediated host–virus interactions in bronchoalveolar stem cells (BASCs) at the onset of infection by correlating the “BASC–microRNome” with their targets within BASCs and viral genome. This work encompasses miRNA array data analysis, target prediction, and miRNA–mRNA enrichment analysis and develops a complex interaction map among disease-related factors, miRNAs, and BASCs in SARS pathway, which will provide some clues for diagnostic markers to view an overall interplay leading to disease progression. Our observation reveals the BASCs (Sca-1+ CD34+ CD45- Pecam-), a subset of Oct-4+ ACE2+ epithelial colony cells at the broncho-alveolar duct junction, to be the prime target cells of SARS-CoV infection. Upregulated BASC miRNAs-17*, -574-5p, and -214 are co-opted by SARS-CoV to suppress its own replication and evade immune elimination until successful transmission takes place. Viral Nucleocapsid and Spike protein targets seem to co-opt downregulated miR-223 and miR-98 respectively within BASCs to control the various stages of BASC differentiation, activation of inflammatory chemokines, and downregulation of ACE2. All these effectively accounts for a successful viral transmission and replication within BASCs causing continued deterioration of lung tissues and apparent loss of capacity for lung repair. Overall, this investigation reveals another mode of exploitation of cellular miRNA machinery by virus to their own advantage.


DNA Research | 2005

Identity elements of archaeal tRNA.

Bibekanand Mallick; Jayprokas Chakrabarti; Satyabrata Sahoo; Zhumur Ghosh; Smarajit Das

Features unique to a transfer-RNA are recognized by the corresponding tRNA-synthetase. Keeping this in view we isolate the discriminating features of all archaeal tRNA. These are our identity elements. Further, we investigate tRNA-characteristics that delineate the different orders of Archaea.


Scientific Reports | 2016

Dynamic changes in global microRNAome and transcriptome reveal complex miRNA-mRNA regulated host response to Japanese Encephalitis Virus in microglial cells.

Bharti Kumari; Pratistha Jain; Shaoli Das; Suman Ghosal; Bibhabasu Hazra; Ashish Chandra Trivedi; Anirban Basu; Jayprokas Chakrabarti; Sudhanshu Vrati; Arup Banerjee

Microglia cells in the brain play essential role during Japanese Encephalitis Virus (JEV) infection and may lead to change in microRNA (miRNA) and mRNA profile. These changes may together control disease outcome. Using Affymetrix microarray platform, we profiled cellular miRNA and mRNA expression at multiple time points during viral infection in human microglial (CHME3) cells. In silico analysis of microarray data revealed a phased pattern of miRNAs expression, associated with JEV replication and provided unique signatures of infection. Target prediction and pathway enrichment analysis identified anti correlation between differentially expressed miRNA and the gene expression at multiple time point which ultimately affected diverse signaling pathways including Notch signaling pathways in microglia. Activation of Notch pathway during JEV infection was demonstrated in vitro and in vivo. The expression of a subset of miRNAs that target multiple genes in Notch signaling pathways were suppressed and their overexpression could affect JEV induced immune response. Further analysis provided evidence for the possible presence of cellular competing endogenous RNA (ceRNA) associated with innate immune response. Collectively, our data provide a uniquely comprehensive view of the changes in the host miRNAs induced by JEV during cellular infection and identify Notch pathway in modulating microglia mediated inflammation.


Oral Oncology | 2012

HNOCDB: A comprehensive database of genes and miRNAs relevant to head and neck and oral cancer

Sanga Mitra; Smarajit Das; Shaoli Das; Suman Ghosal; Jayprokas Chakrabarti

In spite of the wide prevalence of head, neck and oral cancer, HNOC, there is no integrated database on genes and miRNAs associated with all the carcinoma subtypes of HNOC. The objective is to compile a multilayered and comprehensive database of HNOC as a user-friendly resource for researchers devising novel therapeutic strategies. We present HNOCDB, the head, neck and oral cancer database, with the following key features: (i) it tabulates all the different categories of HNOC separately under appropriate subtype-names, and then puts them together in a table headlined All; (ii) the oncogenes/oncomiRs that cause HNOC are listed; their mutations, methylations and polymorphisms loci are marked, and the variations in their expression profiles relative to the normal are recorded; (iii) HNOCDB contains a chromosomal map of HNOC genes and miRNA; (iv) contains references that experimentally validate the reason for the inclusion of the genes and the miRNAs in HNOCDB. HNOCDB is freely accessible for academic and non-profit users via http://gyanxet.com/hno.html.


Scientific Reports | 2015

Anomalous altered expressions of downstream gene-targets in TP53-miRNA pathways in head and neck cancer

Sanga Mitra; Nupur Mukherjee; Smarajit Das; Pijush K. Das; Chinmay Kumar Panda; Jayprokas Chakrabarti

The prevalence of head and neck squamous cell carcinoma, HNSCC, continues to grow. Change in the expression of TP53 in HNSCC affects its downstream miRNAs and their gene targets, anomalously altering the expressions of the five genes, MEIS1, AGTR1, DTL, TYMS and BAK1. These expression alterations follow the repression of TP53 that upregulates miRNA-107, miRNA- 215, miRNA-34 b/c and miRNA-125b, but downregulates miRNA-155. The above five so far unreported genes are the targets of these miRNAs. Meta-analyses of microarray and RNA-Seq data followed by qRT-PCR validation unravel these new ones in HNSCC. The regulatory roles of TP53 on miRNA-155 and miRNA-125b differentiate the expressions of AGTR1 and BAK1in HNSCC vis-à-vis other carcinogenesis. Expression changes alter cell cycle regulation, angiogenic and blood cell formation, and apoptotic modes in affliction. Pathway analyses establish the resulting systems-level functional and mechanistic insights into the etiology of HNSCC.

Collaboration


Dive into the Jayprokas Chakrabarti's collaboration.

Top Co-Authors

Avatar

Smarajit Das

Indian Association for the Cultivation of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sanga Mitra

Indian Association for the Cultivation of Science

View shared research outputs
Top Co-Authors

Avatar

Satyabrata Sahoo

Indian Association for the Cultivation of Science

View shared research outputs
Top Co-Authors

Avatar

Suman Ghosal

Indian Association for the Cultivation of Science

View shared research outputs
Top Co-Authors

Avatar

Shaoli Das

Indian Association for the Cultivation of Science

View shared research outputs
Top Co-Authors

Avatar

Pijush K. Das

Indian Institute of Chemical Biology

View shared research outputs
Top Co-Authors

Avatar

Sujay Chattopadhyay

Indian Association for the Cultivation of Science

View shared research outputs
Top Co-Authors

Avatar

Arpa Samadder

University of Massachusetts Boston

View shared research outputs
Top Co-Authors

Avatar

Smarajit Das

Indian Association for the Cultivation of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge