Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jean-Baptiste Rivière is active.

Publication


Featured researches published by Jean-Baptiste Rivière.


Nature Genetics | 2012

De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes

Jean-Baptiste Rivière; Ghayda M. Mirzaa; Brian J. O'Roak; Margaret Beddaoui; Diana Alcantara; Robert Conway; Judith St-Onge; Jeremy Schwartzentruber; Karen W. Gripp; Sarah M. Nikkel; Christopher T. Sullivan; Thomas R Ward; Hailly Butler; Nancy Kramer; Beate Albrecht; Christine M. Armour; Linlea Armstrong; Oana Caluseriu; Cheryl Cytrynbaum; Beth A. Drolet; A. Micheil Innes; Julie Lauzon; Angela E. Lin; Grazia M.S. Mancini; Wendy S. Meschino; James Reggin; Anand Saggar; Tally Lerman-Sagie; Gökhan Uyanik; Rosanna Weksberg

Megalencephaly-capillary malformation (MCAP) and megalencephaly-polymicrogyria-polydactyly-hydrocephalus (MPPH) syndromes are sporadic overgrowth disorders associated with markedly enlarged brain size and other recognizable features. We performed exome sequencing in 3 families with MCAP or MPPH, and our initial observations were confirmed in exomes from 7 individuals with MCAP and 174 control individuals, as well as in 40 additional subjects with megalencephaly, using a combination of Sanger sequencing, restriction enzyme assays and targeted deep sequencing. We identified de novo germline or postzygotic mutations in three core components of the phosphatidylinositol 3-kinase (PI3K)-AKT pathway. These include 2 mutations in AKT3, 1 recurrent mutation in PIK3R2 in 11 unrelated families with MPPH and 15 mostly postzygotic mutations in PIK3CA in 23 individuals with MCAP and 1 with MPPH. Our data highlight the central role of PI3K-AKT signaling in vascular, limb and brain development and emphasize the power of massively parallel sequencing in a challenging context of phenotypic and genetic heterogeneity combined with postzygotic mosaicism.


Molecular Psychiatry | 2011

Systematic resequencing of X-chromosome synaptic genes in autism spectrum disorder and schizophrenia.

Amélie Piton; Julie Gauthier; Fadi F. Hamdan; Ronald G. Lafrenière; Yan Yang; Edouard Henrion; Sandra Laurent; Anne Noreau; Pascale Thibodeau; Karemera L; Dan Spiegelman; Kuku F; Duguay J; Destroismaisons L; Jolivet P; Mélanie Côté; Lachapelle K; Ousmane Diallo; Raymond A; Claude Marineau; Nathalie Champagne; Lan Xiong; Claudia Gaspar; Jean-Baptiste Rivière; Julien Tarabeux; Patrick Cossette; Marie-Odile Krebs; Judith L. Rapoport; Anjene Addington; Lynn E. DeLisi

Autism spectrum disorder (ASD) and schizophrenia (SCZ) are two common neurodevelopmental syndromes that result from the combined effects of environmental and genetic factors. We set out to test the hypothesis that rare variants in many different genes, including de novo variants, could predispose to these conditions in a fraction of cases. In addition, for both disorders, males are either more significantly or more severely affected than females, which may be explained in part by X-linked genetic factors. Therefore, we directly sequenced 111 X-linked synaptic genes in individuals with ASD (n=142; 122 males and 20 females) or SCZ (n=143; 95 males and 48 females). We identified >200 non-synonymous variants, with an excess of rare damaging variants, which suggest the presence of disease-causing mutations. Truncating mutations in genes encoding the calcium-related protein IL1RAPL1 (already described in Piton et al. Hum Mol Genet 2008) and the monoamine degradation enzyme monoamine oxidase B were found in ASD and SCZ, respectively. Moreover, several promising non-synonymous rare variants were identified in genes encoding proteins involved in regulation of neurite outgrowth and other various synaptic functions (MECP2, TM4SF2/TSPAN7, PPP1R3F, PSMD10, MCF2, SLITRK2, GPRASP2, and OPHN1).


Nature Genetics | 2012

De novo mutations in the actin genes ACTB and ACTG1 cause Baraitser-Winter syndrome

Jean-Baptiste Rivière; Bregje W.M. van Bon; Alexander Hoischen; Stanislav Kholmanskikh; Brian J. O'Roak; Christian Gilissen; Sabine J. Gijsen; Christopher T. Sullivan; Susan L. Christian; Omar A. Abdul-Rahman; Joan F. Atkin; Nicolas Chassaing; Valérie Drouin-Garraud; Andrew E. Fry; Jean-Pierre Fryns; Karen W. Gripp; Marlies Kempers; Tjitske Kleefstra; Grazia M.S. Mancini; Małgorzata J.M. Nowaczyk; Conny M. A. van Ravenswaaij-Arts; Tony Roscioli; Michael Marble; Jill A. Rosenfeld; Victoria M. Siu; Bert B.A. de Vries; Jay Shendure; Alain Verloes; Joris A. Veltman; Han G. Brunner

Brain malformations are individually rare but collectively common causes of developmental disabilities. Many forms of malformation occur sporadically and are associated with reduced reproductive fitness, pointing to a causative role for de novo mutations. Here, we report a study of Baraitser-Winter syndrome, a well-defined disorder characterized by distinct craniofacial features, ocular colobomata and neuronal migration defect. Using whole-exome sequencing of three proband-parent trios, we identified de novo missense changes in the cytoplasmic actin–encoding genes ACTB and ACTG1 in one and two probands, respectively. Sequencing of both genes in 15 additional affected individuals identified disease-causing mutations in all probands, including two recurrent de novo alterations (ACTB, encoding p.Arg196His, and ACTG1, encoding p.Ser155Phe). Our results confirm that trio-based exome sequencing is a powerful approach to discover genes causing sporadic developmental disorders, emphasize the overlapping roles of cytoplasmic actin proteins in development and suggest that Baraitser-Winter syndrome is the predominant phenotype associated with mutation of these two genes.


American Journal of Human Genetics | 2012

Exome Sequencing Identifies FUS Mutations as a Cause of Essential Tremor

Nancy D. Merner; Simon Girard; Hélène Catoire; Cynthia V. Bourassa; Véronique V. Belzil; Jean-Baptiste Rivière; Pascale Hince; Annie Levert; Alexandre Dionne-Laporte; Dan Spiegelman; Anne Noreau; Sabrina Diab; Anna Szuto; Helene Fournier; John V. Raelson; Majid Belouchi; Michel Panisset; Patrick Cossette; Nicolas Dupré; Geneviève Bernard; Sylvain Chouinard; Patrick A. Dion; Guy A. Rouleau

Essential tremor (ET) is a common neurodegenerative disorder that is characterized by a postural or motion tremor. Despite a strong genetic basis, a gene with rare pathogenic mutations that cause ET has not yet been reported. We used exome sequencing to implement a simple approach to control for misdiagnosis of ET, as well as phenocopies involving sporadic and senile ET cases. We studied a large ET-affected family and identified a FUS p.Gln290(∗) mutation as the cause of ET in this family. Further screening of 270 ET cases identified two additional rare missense FUS variants. Functional considerations suggest that the pathogenic effects of ET-specific FUS mutations are different from the effects observed when FUS is mutated in amyotrophic lateral sclerosis cases; we have shown that the ET FUS nonsense mutation is degraded by the nonsense-mediated-decay pathway, whereas amyotrophic lateral sclerosis FUS mutant transcripts are not.


Neurology | 2006

A novel autosomal dominant restless legs syndrome locus maps to chromosome 20p13

Anastasia Levchenko; Sylvie Provost; J. Montplaisir; Lan Xiong; Judith St-Onge; Pascale Thibodeau; Jean-Baptiste Rivière; Alex Desautels; Gustavo Turecki; Marie-Pierre Dubé; Guy A. Rouleau

The authors investigated genetic factors contributing to restless legs syndrome (RLS) by performing a 10-cM genome-wide scan in a large French-Canadian pedigree. They detected an autosomal-dominant locus mapping to chromosome 20p13, with a maximum multipoint lod score of 3.86 at marker D20S849. This is the third reported autosomal-dominant locus for RLS and the first autosomal-dominant RLS locus in the French-Canadian population.


American Journal of Human Genetics | 2011

KIF1A, an axonal transporter of synaptic vesicles, is mutated in hereditary sensory and autonomic neuropathy type 2

Jean-Baptiste Rivière; Siriram Ramalingam; Valérie Lavastre; Masoud Shekarabi; Sébastien Holbert; Julie Lafontaine; Myriam Srour; Nancy D. Merner; Daniel Rochefort; Pascale Hince; Rébecca Gaudet; Anne-Marie Mes-Masson; Jonathan Baets; Henry Houlden; Bernard Brais; Garth A. Nicholson; Hilde Van Esch; Shahriar Nafissi; Mary M. Reilly; Vincent Timmerman; Patrick A. Dion; Guy A. Rouleau

Hereditary sensory and autonomic neuropathy type II (HSANII) is a rare autosomal-recessive disorder characterized by peripheral nerve degeneration resulting in a severe distal sensory loss. Although mutations in FAM134B and the HSN2 exon of WNK1 were associated with HSANII, the etiology of a substantial number of cases remains unexplained. In addition, the functions of WNK1/HSN2 and FAM134B and their role in the peripheral nervous system remain poorly understood. Using a yeast two-hybrid screen, we found that KIF1A, an axonal transporter of synaptic vesicles, interacts with the domain encoded by the HSN2 exon. In parallel to this screen, we performed genome-wide homozygosity mapping in a consanguineous Afghan family affected by HSANII and identified a unique region of homozygosity located on chromosome 2q37.3 and spanning the KIF1A gene locus. Sequencing of KIF1A in this family revealed a truncating mutation segregating with the disease phenotype. Subsequent sequencing of KIF1A in a series of 112 unrelated patients with features belonging to the clinical spectrum of ulcero-mutilating sensory neuropathies revealed truncating mutations in three additional families, thus indicating that mutations in KIF1A are a rare cause of HSANII. Similarly to WNK1 mutations, pathogenic mutations in KIF1A were almost exclusively restricted to an alternatively spliced exon. This study provides additional insights into the molecular pathogenesis of HSANII and highlights the potential biological relevance of alternative splicing in the peripheral sensory nervous system.


Science | 2010

Mutations in DCC cause congenital mirror movements.

Myriam Srour; Jean-Baptiste Rivière; Jessica M. T. Pham; Marie-Pierre Dubé; Simon Girard; Steves Morin; Patrick A. Dion; Géraldine Asselin; Daniel Rochefort; Pascale Hince; Sabrina Diab; Naser Sharafaddinzadeh; Sylvain Chouinard; Hugo Théoret; Frédéric Charron; Guy A. Rouleau

Humans who display involuntary symmetrical limb movements carry mutations in a gene required for nerve growth across the midline. Mirror movements are involuntary contralateral movements that mirror voluntary ones and are often associated with defects in midline crossing of the developing central nervous system. We studied two large families, one French Canadian and one Iranian, in which isolated congenital mirror movements were inherited as an autosomal dominant trait. We found that affected individuals carried protein-truncating mutations in DCC (deleted in colorectal carcinoma), a gene on chromosome 18q21.2 that encodes a receptor for netrin-1, a diffusible protein that helps guide axon growth across the midline. Functional analysis of the mutant DCC protein from the French Canadian family revealed a defect in netrin-1 binding. Thus, DCC has an important role in lateralization of the human nervous system.


Annals of Neurology | 2004

The 14q restless legs syndrome locus in the French Canadian population.

Anastasia Levchenko; J. Montplaisir; Marie‐Pierre Dubé; Jean-Baptiste Rivière; Judith St-Onge; Gustavo Turecki; Lan Xiong; Pascale Thibodeau; Alex Desautels; Dominique J. Verlaan; Guy A. Rouleau

A new restless legs syndrome locus on chromosome 14 recently has been reported in one family of Italian origin. Our study aimed to replicate this finding and determine the importance of this locus in the French Canadian population. Markers spanning the region were genotyped in 14 large families and linkage assessed using two‐point and multipoint logarithm of odds scores. Possible linkage to this locus was found in one of our kindreds providing support for the existence of this locus and indicating that this locus may be responsible for a small fraction of French Canadian restless legs syndrome. Ann Neurol 2004;55:887–891


Journal of Clinical Investigation | 2008

Mutations in the nervous system–specific HSN2 exon of WNK1 cause hereditary sensory neuropathy type II

Masoud Shekarabi; Nathalie Girard; Jean-Baptiste Rivière; Patrick A. Dion; Martin Houle; André Toulouse; Ronald G. Lafrenière; Freya Vercauteren; Pascale Hince; Janet Laganière; Daniel Rochefort; Laurence Faivre; Mark E. Samuels; Guy A. Rouleau

Hereditary sensory and autonomic neuropathy type II (HSANII) is an early-onset autosomal recessive disorder characterized by loss of perception to pain, touch, and heat due to a loss of peripheral sensory nerves. Mutations in hereditary sensory neuropathy type II (HSN2), a single-exon ORF originally identified in affected families in Quebec and Newfoundland, Canada, were found to cause HSANII. We report here that HSN2 is a nervous system-specific exon of the with-no-lysine(K)-1 (WNK1) gene. WNK1 mutations have previously been reported to cause pseudohypoaldosteronism type II but have not been studied in the nervous system. Given the high degree of conservation of WNK1 between mice and humans, we characterized the structure and expression patterns of this isoform in mice. Immunodetections indicated that this Wnk1/Hsn2 isoform was expressed in sensory components of the peripheral nervous system and CNS associated with relaying sensory and nociceptive signals, including satellite cells, Schwann cells, and sensory neurons. We also demonstrate that the novel protein product of Wnk1/Hsn2 was more abundant in sensory neurons than motor neurons. The characteristics of WNK1/HSN2 point to a possible role for this gene in the peripheral sensory perception deficits characterizing HSANII.


American Journal of Human Genetics | 2013

PIK3R1 Mutations Cause Syndromic Insulin Resistance with Lipoatrophy

Christel Thauvin-Robinet; Martine Auclair; Laurence Duplomb; Martine Caron-Debarle; Magali Avila; Judith St-Onge; Martine Le Merrer; Bernard Le Luyer; Delphine Héron; Michèle Mathieu-Dramard; Pierre Bitoun; Jean-Michel Petit; Sylvie Odent; Jeanne Amiel; Damien Picot; Virginie Carmignac; Julien Thevenon; Patrick Callier; Martine Laville; Yves Reznik; Cédric Fagour; Marie-Laure Nunes; Jacqueline Capeau; Olivier Lascols; Frédéric Huet; Laurence Faivre; Corinne Vigouroux; Jean-Baptiste Rivière

Short stature, hyperextensibility of joints and/or inguinal hernia, ocular depression, Rieger anomaly, and teething delay (SHORT) syndrome is a developmental disorder with an unknown genetic cause and hallmarks that include insulin resistance and lack of subcutaneous fat. We ascertained two unrelated individuals with SHORT syndrome, hypothesized that the observed phenotype was most likely due to de novo mutations in the same gene, and performed whole-exome sequencing in the two probands and their unaffected parents. We then confirmed our initial observations in four other subjects with SHORT syndrome from three families, as well as 14 unrelated subjects presenting with syndromic insulin resistance and/or generalized lipoatrophy associated with dysmorphic features and growth retardation. Overall, we identified in nine affected individuals from eight families de novo or inherited PIK3R1 mutations, including a mutational hotspot (c.1945C>T [p.Arg649Trp]) present in four families. PIK3R1 encodes the p85α, p55α, and p50α regulatory subunits of class IA phosphatidylinositol 3 kinases (PI3Ks), which are known to play a key role in insulin signaling. Functional data from fibroblasts derived from individuals with PIK3R1 mutations showed severe insulin resistance for both proximal and distal PI3K-dependent signaling. Our findings extend the genetic causes of severe insulin-resistance syndromes and provide important information with respect to the function of PIK3R1 in normal development and its role in human diseases, including growth delay, Rieger anomaly and other ocular affections, insulin resistance, diabetes, paucity of fat, and ovarian cysts.

Collaboration


Dive into the Jean-Baptiste Rivière's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Kuentz

University of Burgundy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge