Jean C. Ragusa
Texas A&M University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jean C. Ragusa.
Nuclear Science and Engineering | 2009
Yaqi Wang; Jean C. Ragusa
Abstract This paper presents fully automated hp-mesh refinement strategies applied to diffusion equations. In hp strategies, both the mesh size and the polynomial order can vary locally. Numerical results show that exponential convergence rates are achieved for a fraction of the number of unknowns needed with uniform refinement and h-adaptive strategies. The treatment of adaptivity in the multigroup case and the derivation of goal-oriented estimators for neutronics calculations are described. The smoothness of the multigroup components can vary greatly as a function of the energy group; this fact called for the development of group-dependent adapted spatial meshes. The goal-oriented process combines the standard hp adaptation technique with a goal-oriented adaptivity based on the simultaneous solution of an adjoint problem in order to compute quantities of interest, such as reaction rates in subdomains and pointwise fluxes or currents. These algorithms are tested for various multigroup one-dimensional and two-dimensional diffusion problems, and the numerical results confirm the exponential convergence rates predicted theoretically.
Journal of Computational Physics | 2011
Yaqi Wang; Jean C. Ragusa
Standard and goal-oriented adaptive mesh refinement (AMR) techniques are presented for the linear Boltzmann transport equation. A posteriori error estimates are employed to drive the AMR process and are based on angular-moment information rather than on directional information, leading to direction-independent adapted meshes. An error estimate based on a two-mesh approach and a jump-based error indicator are compared for various test problems. In addition to the standard AMR approach, where the global error in the solution is diminished, a goal-oriented AMR procedure is devised and aims at reducing the error in user-specified quantities of interest. The quantities of interest are functionals of the solution and may include, for instance, point-wise flux values or average reaction rates in a subdomain. A high-order (up to order 4) Discontinuous Galerkin technique with standard upwinding is employed for the spatial discretization; the discrete ordinates method is used to treat the angular variable.
Nuclear Science and Engineering | 2010
Bruno Turcksin; Jean C. Ragusa; Wolfgang Bangerth
Abstract We investigate application of goal-oriented mesh adaptivity to the SPN multigroup equations. This technique utilizes knowledge of the computational goal and combines it with mesh adaptivity to accurately and rapidly compute quantities of interest. Specifically, the local error is weighted by the importance of a given cell toward the computational goal, resulting in appropriate goal-oriented error estimates. Even though this approach requires the solution of an adjoint (dual) problem, driven by a specific source term for a given quantity of interest, the work reported here clearly shows the benefits of such a method. We demonstrate the level of accuracy this method can achieve using two-dimensional and three-dimensional numerical test cases for one-group and two-group models and compare results with more traditional mesh refinement and uniformly refined meshes. The test cases consider situations in which the radiative flux of a source is shielded and are designed to prototypically explore the range of conditions under which our methods improve on other refinement algorithms. In particular, they model strong contrasts in material properties, a situation ubiquitous in nuclear engineering.
Nuclear Science and Engineering | 2010
Yaqi Wang; Jean C. Ragusa
Abstract Diffusion synthetic acceleration (DSA) schemes compatible with adaptive mesh refinement (AMR) grids are derived for the SN transport equations discretized using high-order discontinuous finite elements. These schemes are directly obtained from the discretized transport equations by assuming a linear dependence in angle of the angular flux along with an exact Fick’s law and, therefore, are categorized as partially consistent. These schemes are akin to the symmetric interior penalty technique applied to elliptic problems and are all based on a second-order discontinuous finite element discretization of a diffusion equation (as opposed to a mixed or P1 formulation). Therefore, they only have the scalar flux as unknowns. A Fourier analysis has been carried out to determine the convergence properties of the three proposed DSA schemes for various cell optical thicknesses and aspect ratios. Out of the three DSA schemes derived, the modified interior penalty (MIP) scheme is stable and effective for realistic problems, even with distorted elements, but loses effectiveness for some highly heterogeneous configurations. The MIP scheme is also symmetric positive definite and can be solved efficiently with a preconditioned conjugate gradient method. Its implementation in an AMR SN transport code has been performed for both source iteration and GMRes-based transport solves, with polynomial orders up to 4. Numerical results are provided and show good agreement with the Fourier analysis results. Results on AMR grids demonstrate that the cost of DSA can be kept low on locally refined meshes.
Nuclear Science and Engineering | 2009
Yaqi Wang; Jean C. Ragusa
Abstract The convergence properties of the discontinuous Galerkin finite element method (DGFEM) applied to the transport equation are presented for variants of Larsen’s test case. The analysis is performed for two-dimensional structured and unstructured triangular meshes, with DGFEM approximations up to order 4. Pure absorber media and scattering media are considered. The influence of the mesh alignment with the singularities of the transport solution is described. The numerically observed convergence rates are related to theoretical results.
Nuclear Science and Engineering | 2011
Richard Sanchez; Jean C. Ragusa
Abstract An angular approximation of the transport equation based on a collocation technique results as an intermediary step in the search for a set of modified discrete ordinates (DO) equations, which eliminates ray effects. The collocation equations are similar to the DO ones with the only difference being that the scattering term is evaluated with a full Galerkin matrix instead of with the DO quadrature formula. The Galerkin quadrature offers the advantage of a better treatment of scattering anisotropy and a correct evaluation of the singular scattering associated to multigroup transport correction. However, the construction of the Galerkin matrix requires the existence of two equivalent bases in a final-dimensional representation space: an interpolatory basis to retain the collocative nature of the DO approximation and a spherical harmonic basis to represent scattering terms accurately. Up to now, the relationship between these two bases was heuristic, stemming from trial and errors. In this work we analyze the symmetries of the angular direction set and also use the factorized form of the spherical harmonics to derive a set of necessary conditions for the construction of the spherical harmonic basis. These conditions give an analytical explanation to previous heuristic techniques and fully extend them to three-dimensional geometries. We have adopted an assembling method for which extensive numerical tests show that the necessary conditions permit the construction of the Galerkin quadrature from level-symmetric, triangular, and product direction sets up to a high number of polar cosines. Our results can also be generalized to calculate Galerkin matrices for nonregular quadrature formulas. However, these necessary conditions are not sufficient, and we give numerical proof of this fact using different assembling techniques. Our assembling technique allows for the construction of Galerkin matrices from triangular direction sets (for which the DO quadrature is notoriously poor), which have positive weights for up to 44 polar cosines. In three dimensions this quadrature has 2024 angular directions and is able to exactly integrate scattering of anisotropy order 24.
Transport Theory and Statistical Physics | 2012
Bruno Turcksin; Jean C. Ragusa; Jim E. Morel
It is well known that the diffusion synthetic acceleration (DSA) methods for the Sn equations become ineffective in the Fokker-Planck forward-peaked scattering limit. In response to this deficiency, Morel and Manteuffel (1991) developed an angular multigrid method for the 1-D Sn equations. This method is very effective, costing roughly twice as much as DSA per source iteration, and yielding a maximum spectral radius of approximately 0.6 in the Fokker-Planck limit. Pautz, Adams, and Morel (PAM) (1999) later generalized the angular multigrid to 2-D, but it was found that the method was unstable with sufficiently forward-peaked mappings between the angular grids. The method was stabilized via a filtering technique based on diffusion operators, but this filtering also degraded the effectiveness of the overall scheme. The spectral radius was not bounded away from unity in the Fokker-Planck limit, although the method remained more effective than DSA. The purpose of this article is to recast the multidimensional PAM angular multigrid method without the filtering as an Sn preconditioner and use it in conjunction with the Generalized Minimal RESidual (GMRES) Krylov method. The approach ensures stability and our computational results demonstrate that it is also significantly more efficient than an analogous DSA-preconditioned Krylov method.
Journal of Computational and Theoretical Transport | 2014
Jon Hansen; Jacob Peterson; Jim E. Morel; Jean C. Ragusa; Yaqi Wang
Standard second-order self-adjoint forms of the transport equation, such as the even-parity, odd-parity, and self-adjoint angular flux equation, cannot be used in voids. Perhaps more important, they experience numerical convergence difficulties in near-voids. Here we present a new form of a second-order self-adjoint transport equation that has an advantage relative to standard forms in that it can be used in voids or near-voids. Our equation is closely related to the standard least-squares form of the transport equation with both equations being applicable in a void and having a nonconservative analytic form. However, unlike the standard least-squares form of the transport equation, our least-squares equation is compatible with source iteration. It has been found that the standard least-squares form of the transport equation with a linear-continuous finite-element spatial discretization has difficulty in the thick diffusion limit. Here we extensively test the 1D slab-geometry version of our scheme with respect to void solutions, spatial convergence rate, and the intermediate and thick diffusion limits. We also define an effective diffusion synthetic acceleration scheme for our discretization. Our conclusion is that our least-squares Sn formulation represents an excellent alternative to existing second-order Sn transport formulations.
Journal of Computational Physics | 2016
Peter G. Maginot; Jean C. Ragusa; Jim E. Morel
This work presents a solution methodology for solving the grey radiative transfer equations that is both spatially and temporally more accurate than the canonical radiative transfer solution technique of linear discontinuous finite element discretization in space with implicit Euler integration in time. We solve the grey radiative transfer equations by fully converging the nonlinear temperature dependence of the material specific heat, material opacities, and Planck function. The grey radiative transfer equations are discretized in space using arbitrary-order self-lumping discontinuous finite elements and integrated in time with arbitrary-order diagonally implicit RungeKutta time integration techniques. Iterative convergence of the radiation equation is accelerated using a modified interior penalty diffusion operator to precondition the full discrete ordinates transport operator.
Nuclear Science and Engineering | 2015
Peter G. Maginot; Jean C. Ragusa; Jim E. Morel
Abstract We examine several mass matrix lumping techniques for the discrete ordinates (SN) particle transport equations spatially discretized with arbitrary order discontinuous finite elements in one-dimensional (1-D) slab geometry. Though positive outflow angular flux is guaranteed with traditional mass matrix lumping for linear solution representations in source-free, purely absorbing 1-D slab geometry, we show that when used with higher-degree polynomial trial spaces, traditional lumping does not yield strictly positive outflows and does not increase the solution accuracy with increase in the polynomial degree of the trial space. As an alternative, we examine quadrature-based lumping strategies, which we term “self-lumping” (SL). Self-lumping creates diagonal mass matrices by using a numerical quadrature restricted to the Lagrange interpolatory points. When choosing equally spaced interpolatory points, SL is achieved through the use of closed Newton-Cotes formulas, resulting in strictly positive outflows for odd degree polynomial trial spaces in 1-D slab geometry. When selecting the interpolatory points to be the abscissas of a Gauss-Legendre or a Lobatto-Gauss-Legendre quadrature, it is possible to obtain solution representations with a strictly positive outflow in source-free pure absorber problems for any degree polynomial trial space in 1-D slab geometry. Furthermore, there is no inherent limit to local truncation error order of accuracy when using interpolatory points that correspond to Gauss-Legendre or Lobatto-Gauss-Legendre quadrature points. A single-cell analysis is performed to investigate outflow positivity and truncation error as a function of the trial space polynomial degree, the choice of interpolatory points, and the numerical integration strategy. We also verify that the single-cell local truncation error analysis translates into the expected global spatial convergence rates in multiple-cell problems.