Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jean-Christophe Barale is active.

Publication


Featured researches published by Jean-Christophe Barale.


Nature | 2014

A molecular marker of artemisinin-resistant Plasmodium falciparum malaria

Frédéric Ariey; Benoit Witkowski; Chanaki Amaratunga; Johann Beghain; Anne-Claire Langlois; Nimol Khim; Saorin Kim; Valentine Duru; Christiane Bouchier; Laurence Ma; Pharath Lim; Rithea Leang; Socheat Duong; Sokunthea Sreng; Seila Suon; Char Meng Chuor; Denis Mey Bout; Sandie Menard; William O. Rogers; Blaise Genton; Thierry Fandeur; Olivo Miotto; Pascal Ringwald; Jacques Le Bras; Antoine Berry; Jean-Christophe Barale; Rick M. Fairhurst; Françoise Benoit-Vical; Odile Mercereau-Puijalon; Didier Ménard

Plasmodium falciparum resistance to artemisinin derivatives in southeast Asia threatens malaria control and elimination activities worldwide. To monitor the spread of artemisinin resistance, a molecular marker is urgently needed. Here, using whole-genome sequencing of an artemisinin-resistant parasite line from Africa and clinical parasite isolates from Cambodia, we associate mutations in the PF3D7_1343700 kelch propeller domain (‘K13-propeller’) with artemisinin resistance in vitro and in vivo. Mutant K13-propeller alleles cluster in Cambodian provinces where resistance is prevalent, and the increasing frequency of a dominant mutant K13-propeller allele correlates with the recent spread of resistance in western Cambodia. Strong correlations between the presence of a mutant allele, in vitro parasite survival rates and in vivo parasite clearance rates indicate that K13-propeller mutations are important determinants of artemisinin resistance. K13-propeller polymorphism constitutes a useful molecular marker for large-scale surveillance efforts to contain artemisinin resistance in the Greater Mekong Subregion and prevent its global spread.


Molecular and Biochemical Parasitology | 2000

Pfsbp1, a Maurer's cleft Plasmodium falciparum protein, is associated with the erythrocyte skeleton

Thierry Blisnick; Maria Eugenia Morales Betoulle; Jean-Christophe Barale; Pierrick Uzureau; Laurence Berry; Sarah Desroses; Hisashi Fujioka; Denise Mattei; Catherine Braun Breton

Antibodies from hyperimmune monkey sera, selected by absorption to Plasmodium falciparum-infected erythrocytes, and elution at acidic pH, allowed us to characterize a novel parasite protein, Pfsbp1 (P. falciparum skeleton binding protein 1). Pfsbp1 is an integral membrane protein of parasite-induced membranous structures associated with the erythrocyte plasma membrane and referred to as Maurers clefts. The carboxy-terminal domain of Pfsbp1, exposed within the cytoplasm of the host cell, interacts with a 35 kDa erythrocyte skeletal protein and might participate in the binding of the Maurers clefts to the erythrocyte submembrane skeleton. Antibodies to the carboxy- and amino-terminal domains of Pfsbp1 labelled similar vesicular structures in the cytoplasm of Plasmodium chabaudi and Plasmodium berghei-infected murine erythrocytes, suggesting that the protein is conserved among malaria species, consistent with an important role of Maurers cleft-like structures in the intraerythrocytic development of malaria parasites.


Antimicrobial Agents and Chemotherapy | 2013

Reduced Artemisinin Susceptibility of Plasmodium falciparum Ring Stages in Western Cambodia

Benoit Witkowski; Nimol Khim; Pheaktra Chim; Saorin Kim; Sopheakvatey Ke; Nimol Kloeung; Sophy Chy; Socheat Duong; Rithea Leang; Pascal Ringwald; Arjen M. Dondorp; Rupam Tripura; Françoise Benoit-Vical; Antoine Berry; Olivier Gorgette; Frédéric Ariey; Jean-Christophe Barale; Odile Mercereau-Puijalon; Didier Ménard

ABSTRACT The declining efficacy of artemisinin derivatives against Plasmodium falciparum in western Cambodia is a major concern. The knowledge gap in the understanding of the mechanisms involved hampers designing monitoring tools. Here, we culture-adapted 20 isolates from Pailin and Ratanakiri (areas of artemisinin resistance and susceptibility in western and eastern Cambodia, respectively) and studied their in vitro response to dihydroartemisinin. No significant difference between the two sets of isolates was observed in the classical isotopic test. However, a 6-h pulse exposure to 700 nM dihydroartemisinin (ring-stage survival assay -RSA]) revealed a clear-cut geographic dichotomy. The survival rate of exposed ring-stage parasites (ring stages) was 17-fold higher in isolates from Pailin (median, 13.5%) than in those from Ratanakiri (median, 0.8%), while exposed mature stages were equally and highly susceptible (0.6% and 0.7%, respectively). Ring stages survived drug exposure by cell cycle arrest and resumed growth upon drug withdrawal. The reduced susceptibility to artemisinin in Pailin appears to be associated with an altered in vitro phenotype of ring stages from Pailin in the RSA.


The New England Journal of Medicine | 2016

A Worldwide Map of Plasmodium falciparum K13-Propeller Polymorphisms.

Didier Ménard; Nimol Khim; Johann Beghain; Ayola A. Adegnika; Mohammad Shafiul-Alam; Olukemi K. Amodu; Ghulam Rahim-Awab; Céline Barnadas; Antoine Berry; Yap Boum; Maria D. Bustos; Jun Cao; Jun-Hu Chen; Louis Collet; Liwang Cui; Garib-Das Thakur; Alioune Dieye; Djibrine Djalle; Monique A. Dorkenoo; Carole E. Eboumbou-Moukoko; Fe-Esperanza-Caridad J. Espino; Thierry Fandeur; Maria-Fatima Ferreira-da-Cruz; Abebe A. Fola; Hans-Peter Fuehrer; Abdillahi M. Hassan; Sócrates Herrera; Bouasy Hongvanthong; Sandrine Houzé; Maman L. Ibrahim

BACKGROUND Recent gains in reducing the global burden of malaria are threatened by the emergence of Plasmodium falciparum resistance to artemisinins. The discovery that mutations in portions of a P. falciparum gene encoding kelch (K13)-propeller domains are the major determinant of resistance has provided opportunities for monitoring such resistance on a global scale. METHODS We analyzed the K13-propeller sequence polymorphism in 14,037 samples collected in 59 countries in which malaria is endemic. Most of the samples (84.5%) were obtained from patients who were treated at sentinel sites used for nationwide surveillance of antimalarial resistance. We evaluated the emergence and dissemination of mutations by haplotyping neighboring loci. RESULTS We identified 108 nonsynonymous K13 mutations, which showed marked geographic disparity in their frequency and distribution. In Asia, 36.5% of the K13 mutations were distributed within two areas--one in Cambodia, Vietnam, and Laos and the other in western Thailand, Myanmar, and China--with no overlap. In Africa, we observed a broad array of rare nonsynonymous mutations that were not associated with delayed parasite clearance. The gene-edited Dd2 transgenic line with the A578S mutation, which expresses the most frequently observed African allele, was found to be susceptible to artemisinin in vitro on a ring-stage survival assay. CONCLUSIONS No evidence of artemisinin resistance was found outside Southeast Asia and China, where resistance-associated K13 mutations were confined. The common African A578S allele was not associated with clinical or in vitro resistance to artemisinin, and many African mutations appear to be neutral. (Funded by Institut Pasteur Paris and others.).


Journal of Experimental Medicine | 2009

Drug inhibition of HDAC3 and epigenetic control of differentiation in Apicomplexa parasites

Alexandre Bougdour; Danièle Maubon; Patricia Baldacci; Philippe Ortet; Olivier Bastien; Anthony Bouillon; Jean-Christophe Barale; Hervé Pelloux; Robert Ménard; Mohamed-Ali Hakimi

Plasmodium and Toxoplasma are parasites of major medical importance that belong to the Apicomplexa phylum of protozoa. These parasites transform into various stages during their life cycle and express a specific set of proteins at each stage. Although little is yet known of how gene expression is controlled in Apicomplexa, histone modifications, particularly acetylation, are emerging as key regulators of parasite differentiation and stage conversion. We investigated the anti-Apicomplexa effect of FR235222, a histone deacetylase inhibitor (HDACi). We show that FR235222 is active against a variety of Apicomplexa genera, including Plasmodium and Toxoplasma, and is more potent than other HDACis such as trichostatin A and the clinically relevant compound pyrimethamine. We identify T. gondii HDAC3 (TgHDAC3) as the target of FR235222 in Toxoplasma tachyzoites and demonstrate the crucial role of the conserved and Apicomplexa HDAC-specific residue TgHDAC3 T99 in the inhibitory activity of the drug. We also show that FR235222 induces differentiation of the tachyzoite (replicative) into the bradyzoite (nonreplicative) stage. Additionally, via its anti-TgHDAC3 activity, FR235222 influences the expression of ∼370 genes, a third of which are stage-specifically expressed. These results identify FR235222 as a potent HDACi of Apicomplexa, and establish HDAC3 as a central regulator of gene expression and stage conversion in Toxoplasma and, likely, other Apicomplexa.


Molecular Microbiology | 2005

Trypanosoma cruzi proline racemases are involved in parasite differentiation and infectivity.

Nathalie Chamond; Maira Goytia; Jean-Christophe Barale; Alain Cosson; Wim Degrave; Paola Minoprio

Polyclonal lymphocyte activation is one of the major immunological disturbances observed after microbial infections and among the primary strategies used by the parasite Trypanosoma cruzi to avoid specific immune responses and ensure survival. T. cruzi is the insect‐transmitted protozoan responsible for Chagas’ disease, the third public health problem in Latin America. During infection of its mammalian host, the parasite secretes a proline racemase that contributes to parasite immune evasion by acting as a B‐cell mitogen. This enzyme is the first described eukaryotic amino acid racemase and is encoded by two paralogous genes per parasite haploid genome, TcPRACA and TcPRACB that give rise, respectively, to secreted and intracellular protein isoforms. While TcPRACB encodes an intracellular enzyme, analysis of TcPRACA paralogue revealed putative signals allowing the generation of an additional, non‐secreted isoform of proline racemase by an alternative trans‐splicing mechanism. Here, we demonstrate that overexpression of TcPRAC leads to an increase in parasite differentiation into infective forms and in its subsequent penetration into host cells. Furthermore, a critical impairment of parasite viability was observed in functional knock‐down parasites. These results strongly emphasize that TcPRAC is a potential target for drug design as well as for immunomodulation of parasite‐induced B‐cell polyclonal activation.


Cellular Microbiology | 2004

Gene targeting demonstrates that the Plasmodium berghei subtilisin PbSUB2 is essential for red cell invasion and reveals spontaneous genetic recombination events

Pierrick Uzureau; Jean-Christophe Barale; Chris J. Janse; Andrew P. Waters; Catherine Braun Breton

The Plasmodium merozoite proteases involved in the crucial process of erythrocyte invasion are promising targets for novel malaria control strategies. We report here the characterization of the subtilisin‐like protease SUB2 from the rodent parasites Plasmodium berghei and Plasmodium yoelii, leading the way to in vivo functional studies of this enzyme. The kinetics of expression and subcellular localization imply a central role for SUB2 in erythrocyte invasion. Through the use of gene targeting strategies, we assessed the relevance of P. berghei SUB2 for the intraerythrocytic cycle. The selection of recombinant Pbsub2‐TrimycDuoXpress‐tagged parasites and the proper expression of the modified coding region demonstrate that the Pbsub2 locus is accessible to genetic modifications. However, Pbsub2 knock‐out parasites were not recovered, confirming the importance of PbSUB2 for P. berghei merozoite stages, and supporting the fact that its Plasmodium falciparum SUB2 orthologue is an attractive drug target candidate. Finally, we identify revertant parasites that have lost the integrated selection cassette while conserving a Pbsub2‐tagged gene. These spontaneous reversion events should overcome the scarcity of selectable markers available for this parasite, giving access to multiple gene tagging strategies, which, together with the validation of a TrimycDuoXpress tag, would represent valuable new tools for studying the biology of P. berghei.


PLOS ONE | 2011

Computational Reverse-Engineering of a Spider-Venom Derived Peptide Active Against Plasmodium falciparum SUB1

Giacomo Bastianelli; Anthony Bouillon; Christophe Nguyen; Elodie Crublet; Stéphane Petres; Olivier Gorgette; Dung Le-Nguyen; Jean-Christophe Barale; Michael Nilges

Background Psalmopeotoxin I (PcFK1), a protein of 33 aminoacids derived from the venom of the spider Psalmopoeus Cambridgei, is able to inhibit the growth of Plasmodium falciparum malaria parasites with an IC in the low micromolar range. PcFK1 was proposed to act as an ion channel inhibitor, although experimental validation of this mechanism is lacking. The surface loops of PcFK1 have some sequence similarity with the parasite protein sequences cleaved by PfSUB1, a subtilisin-like protease essential for egress of Plasmodium falciparum merozoites and invasion into erythrocytes. As PfSUB1 has emerged as an interesting drug target, we explored the hypothesis that PcFK1 targeted PfSUB1 enzymatic activity. Findings Molecular modeling and docking calculations showed that one loop could interact with the binding site of PfSUB1. The calculated free energy of binding averaged −5.01 kcal/mol, corresponding to a predicted low-medium micromolar constant of inhibition. PcFK1 inhibited the enzymatic activity of the recombinant PfSUB1 enzyme and the in vitro P.falciparum culture in a range compatible with our bioinformatics analysis. Using contact analysis and free energy decomposition we propose that residues A14 and Q15 are important in the interaction with PfSUB1. Conclusions Our computational reverse engineering supported the hypothesis that PcFK1 targeted PfSUB1, and this was confirmed by experimental evidence showing that PcFK1 inhibits PfSUB1 enzymatic activity. This outlines the usefulness of advanced bioinformatics tools to predict the function of a protein structure. The structural features of PcFK1 represent an interesting protein scaffold for future protein engineering.


Journal of Biological Chemistry | 2013

A key role for Plasmodium subtilisin-like SUB1 protease in egress of malaria parasites from host hepatocytes.

Lina Tawk; Céline Lacroix; Pascale Gueirard; Robyn Kent; Olivier Gorgette; Sabine Thiberge; Odile Mercereau-Puijalon; Robert Ménard; Jean-Christophe Barale

Background: The subtilisin-like SUB1 is involved in Plasmodium egress from erythrocytes. Results: Using conditional mutagenesis, we show that SUB1 plays an essential role during Plasmodium hepatic stages. Conclusion: SUB1 has a dual pivotal role in parasite egress from host hepatocytes and erythrocytes. Significance: Its critical involvement in hepatic and erythrocytic parasite development qualifies SUB1 as a multistage drug target. In their mammalian host, Plasmodium parasites have two obligatory intracellular development phases, first in hepatocytes and subsequently in erythrocytes. Both involve an orchestrated process of invasion into and egress from host cells. The Plasmodium SUB1 protease plays a dual role at the blood stage by enabling egress of the progeny merozoites from the infected erythrocyte and priming merozoites for subsequent erythrocyte invasion. Here, using conditional mutagenesis in P. berghei, we show that SUB1 plays an essential role at the hepatic stage. Stage-specific sub1 invalidation during prehepatocytic development showed that SUB1-deficient parasites failed to rupture the parasitophorous vacuole membrane and to egress from hepatocytes. Furthermore, mechanically released parasites were not adequately primed and failed to establish a blood stage infection in vivo. The critical involvement of SUB1 in both pre-erythrocytic and erythrocytic developmental phases qualifies SUB1 as an attractive multistage target for prophylactic and therapeutic anti-Plasmodium intervention strategies.


Molecular and Biochemical Parasitology | 1997

Plasmodium falciparum asparagine and aspartate rich protein 2 is an evolutionary conserved protein whose repeats identify a new family of parasite antigens

Jean-Christophe Barale; Géraldine Attal-Bonnefoy; Karima Brahimi; Luiz Hildebrando Pereira da Silva; Gordon Langsley

We describe here a new Plasmodium falciparum antigen, asparagine and aspartate rich protein 2 (PfAARP2) of 150 kDa, which is encoded by a unique gene on chromosome 1. PfAARP2 is first expressed 12 h post-invasion and accumulates in trophozoites and schizonts. Immunofluorescence studies indicate that PfAARP2 is translocated into the red blood cell cytoplasm. The central region of Pfaarp2 contains blocks of repetitions encoding asparagine and aspartate residues, which define a new family of related genes dispersed on different chromosomes, and two members of this family have also been identified. Interestingly, the non-repeated N- and C-termini of PfAARP2 display significant similarity to two yeast and human predicted proteins, and its possible function is discussed.

Collaboration


Dive into the Jean-Christophe Barale's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frédéric Ariey

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Pascal Ringwald

World Health Organization

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge