Jean-Christophe Giard
University of Caen Lower Normandy
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jean-Christophe Giard.
Current Microbiology | 1996
Axel Hartke; Sandrine Bouche; Jean-Christophe Giard; Abdellah Benachour; Philippe Boutibonnes; Yanick Auffray
Abstract. The lactic acid tolerance response (LATR) of the lactic acid bacterium Lactococcus lactis subsp. lactis has been studied. A dramatic increase in survival to a severe acid stress (pH 3.9) was obtained by preexposing the cells for 30 min to a mildly acid shock at pH 5.5. Whole-cell protein extract analysis revealed that during the acid tolerance response 33 polypeptides are induced over the level of naive cells. Among these are the major heat shock proteins DnaK and GroEL. In conjunction with a previous report (Hartke et al. 1994), the results establish that L. lactis can adapt to lactic acid exposure in two different ways: a logarithmic phase LATR, which may be activated by protons, and a stationary-phase LATR, which needs no activation by protons. Both systems are independent of de novo protein synthesis.
Electrophoresis | 2001
Jean-Christophe Giard; Jean-Marie Laplace; Alain Rincé; Vianney Pichereau; Abdellah Benachour; Céline Leboeuf; Sigrid Flahaut; Yanick Auffray; Axel Hartke
Enterococcus faecalisis a resident bacterium of the intestinal tract of humans and animals. This bacterium can be responsible for serious diseases and is one of the largest causes of hospital‐based infections. This hardy organism resists many kinds of stresses and is used as a major indicator of the hygienic quality of food, milk, and drinking water. On the other side, enterococci seem to have beneficial role in the development of cheese aroma and are added in certain starter cultures. Since ten years, our laboratory has used the two‐dimensional electrophoresis (2‐DE) technique to study the response of E. faecalis to physical or chemical stresses as well as to glucose and total starvation. Twenty‐seven protein spots on 2‐D gels have been identified by N‐terminal sequencing or Western blotting which make up the first proteome database of this species. The proteins were classified in four different groups according to their function and their regulation. The first group comprises well‐characterized proteins with known protective functions towards stresses. The second group contains enzymes of catabolic pathways. Their implication in stress resistance seems not obvious. A third group are proteins induced in glucose‐starved cells belonging to the CcpA regulon. Induction of these enzymes under starvation may serve to increase the scavenging capacity of the cells for nutrients or may be important to mobilize endogenous energetic reserves. Lastly, nine N‐terminal amino acid sequences or open reading frames (ORF) showed no homologies with sequences in databases. A comprehensive description of stress proteins of E. faecalisand analysis of their patterns of expression under different environmental conditions would greatly increase our understanding of the molecular mechanisms underlying the extraordinary capacity of this bacterium to survive under hostile conditions.
Molecular Microbiology | 2007
Stéphanie La Carbona; Nicolas Sauvageot; Jean-Christophe Giard; Abdellah Benachour; Brunella Posteraro; Yanick Auffray; Maurizio Sanguinetti; Axel Hartke
The opportunistic pathogen Enterococcus faecalis is well equipped with peroxidatic activities. It harbours three loci encoding a NADH peroxidase, an alkyl hydroperoxide reductase and a protein (EF2932) belonging to the AhpC/TSA family. We present results demonstrating that ef2932 does encode a thiol peroxidase (Tpx) and show that it is part of the regulon of the hydrogen peroxide regulator HypR. Characterization of unmarked deletion mutants showed that all three peroxidases are important for the defence against externally provided H2O2. Exposure to internal generated H2O2 by aerobic growth on glycerol, lactose, galactose or ribose showed that Npr was absolutely required for aerobic growth on glycerol and optimal growth on the other substrates. Growth on glycerol was also dependent on Ahp. Addition of catalase restored growth of the mutants, and therefore, extracellular H2O2 concentrations have been determined. This showed that the time point of growth arrest of the Δnpr mutant correlated with the highest H2O2 concentration measured. Analysis of the survival of the different strains inside peritoneal macrophages revealed that Tpx was the most important antioxidant activity for protecting the cells against the hostile phagocyte environment. Finally, the Δtpx and the triple mutant showed attenuated virulence in a mouse peritonitis model.
Current Microbiology | 1996
Jean-Christophe Giard; Axel Hartke; Sigrid Flahaut; Abdellah Benachour; Philippe Boutibonnes; Yanick Auffray
Abstract. Compared with growing bacteria, carbohydrate-starved cells of Enterococcus faecalis show development of a multiresistance state against heat, H2O2, acid, and ethanol, but not against UV irradiation. The kinetics of acquisition of resistance is different according to the stress. Three hours of starvation provide maximal resistance against ethanol, while the tolerance to heat, H2O2, and acid increases progressively with the duration of starvation. Chloramphenicol treatment does not abolish the ethanol tolerance. Protein synthesis inhibition during the transitional growth phase and the first hours of starvation partially inhibit the acquisition of heat and oxidative resistances. Antibiotic treatment after 3 h of starvation does not affect the increase of these resistances. We suggest that synthesis of specific proteins revealed by 2-D gel analysis in the first 3 h of starvation, followed by a second mechanism related to protein degradation or alteration, is necessary for acquisition of maximal resistance towards heat and oxidative stresses.
Infection and Immunity | 2009
François Lebreton; Eliette Riboulet-Bisson; Pascale Serror; Maurizio Sanguinetti; Brunella Posteraro; Riccardo Torelli; Axel Hartke; Yanick Auffray; Jean-Christophe Giard
ABSTRACT Enterococcus faecalis is an opportunistic pathogen that causes numerous infectious diseases in humans and is a major agent of nosocomial infections. In this work, we showed that the recently identified transcriptional regulator Ers (PrfA like), known to be involved in the cellular metabolism and the virulence of E. faecalis, acts as a repressor of ace, which encodes a collagen-binding protein. We characterized the promoter region of ace, and transcriptional analysis by reverse transcription-quantitative PCR and mobility shift protein-DNA binding assays revealed that Ers directly regulates the expression of ace. Transcription of ace appeared to be induced by the presence of bile salts, probably via the deregulation of ers. Moreover, with an ace deletion mutant and the complemented strain and by using an insect (Galleria mellonella) virulence model, as well as in vivo-in vitro murine macrophage models, we demonstrated for the first time that Ace can be considered a virulence factor for E. faecalis. Furthermore, animal experiments revealed that Ace is also involved in urinary tract infection by E. faecalis.
Microbiology | 2014
Charlotte Michaux; Nicolas Verneuil; Axel Hartke; Jean-Christophe Giard
Unlike proteins, RNA molecules have emerged lately as key players in regulation in bacteria. Most reviews hitherto focused on the experimental and/or in silico methods used to identify genes encoding small RNAs (sRNAs) or on the diverse mechanisms of these RNA regulators to modulate expression of their targets. However, less is known about their biological functions and their implications in various physiological responses. This review aims to compile what is known presently about the diverse roles of sRNA transcripts in the regulation of metabolic processes, in different growth conditions, in adaptation to stress and in microbial pathogenesis. Several recent studies revealed that sRNA molecules are implicated in carbon metabolism and transport, amino acid metabolism or metal sensing. Moreover, regulatory RNAs participate in cellular adaptation to environmental changes, e.g. through quorum sensing systems or development of biofilms, and analyses of several sRNAs under various physiological stresses and culture conditions have already been performed. In addition, recent experiments performed with Gram-positive and Gram-negative pathogens showed that regulatory RNAs play important roles in microbial virulence and during infection. The combined results show the diversity of regulation mechanisms and physiological processes in which sRNA molecules are key actors.
Journal of Bacteriology | 2001
Alain Rincé; Jean-Christophe Giard; Vianney Pichereau; Sigrid Flahaut; Yanick Auffray
The Enterococcus faecalis general stress protein Gsp65 has been purified from two-dimensional gel electrophoresis. Determination of its N-terminal sequence and characterization of the corresponding gene revealed that the gsp65 product is a 133-amino-acid protein sharing homologies with organic hydroperoxide resistance (Ohr) proteins. Transcriptional analysis of gsp65 gave evidence for a monocistronic mRNA initiated 52 nucleotides upstream of the ATG start codon and for an induction in response to hydrogen peroxide, heat shock, acid pH, detergents, ethanol, sodium chloride, and tert-butylhydroperoxide (tBOOH). A gsp65 mutant showed increased sensitivity to the organic hydroperoxide tBOOH and to ethanol.
International Journal of Medical Microbiology | 2011
Bernd Kreikemeyer; Gustavo Gámez; Immaculada Margarit; Jean-Christophe Giard; Sven Hammerschmidt; Axel Hartke; Andreas Podbielski
Oligocomponent pilus structures, recently discovered in many important Gram-positive pathogens, represent a new class of virulence factors with adhesive and matrix protein-binding activity. Some of these proteins have emerged as very promising lead components of protein-based vaccines against Streptococci. These extended surface structures play key roles in host cell and tissue adherence, paracellular translocation, and biofilm formation of major Gram-positive pathogens such as Streptococcus pyogenes, S. agalactiae, S. pneumoniae as well as in opportunistic and nosocomial pathogens like Enterococci. Here, we discuss the similarities and differences of: (1) the genomic organization of the various regions encoding pilus proteins, (2) the number, type, and assembly of the proteins constituting the pili, (3) their expression and regulation mechanisms, (4) their role in bacterial virulence, and (5) their potential as vaccine candidate antigens.
Infection and Immunity | 2004
Nicolas Verneuil; Maurizio Sanguinetti; Yoann Le Breton; Brunella Posteraro; Giovanni Fadda; Yanick Auffray; Axel Hartke; Jean-Christophe Giard
ABSTRACT In order to identify regulators of the oxidative stress response in Enterococcus faecalis, an important human pathogen, several genes annotated as coding for transcriptional regulators were inactivated by insertional mutagenesis. One mutant, affected in the ef2958 locus (designated hypR [hydrogen peroxide regulator]), appeared to be highly sensitive to oxidative challenge caused by hydrogen peroxide. Moreover, testing of the hypR mutant by using an in vivo-in vitro macrophage infection model resulted in a highly significant reduction in survival compared to the survival of parent strain JH2-2. Northern blot analyses were carried out with probes specific for genes encoding known antioxidant enzymes, and they showed that the ahpCF (alkyl hydroperoxide reductase) transcript was expressed less in mutant cells. Mobility shift protein-DNA binding assays revealed that HypR regulated directly the expression of hypR itself and the ahpCF operon. Our combined results showed that HypR appeared to be directly involved in the expression of ahpCF genes under oxidative stress conditions and suggested that this regulator could contribute to the virulence of E. faecalis.
Journal of Bacteriology | 2010
Alain Bizzini; Chen Zhao; Aurélie Budin-Verneuil; Nicolas Sauvageot; Jean-Christophe Giard; Yanick Auffray; Axel Hartke
Enterococcus faecalis is equipped with two pathways of glycerol dissimilation. Glycerol can either first be phosphorylated by glycerol kinase and then oxidized by glycerol-3-phosphate oxidase (the glpK pathway) or first be oxidized by glycerol dehydrogenase and then phosphorylated by dihydroxyacetone kinase (the dhaK pathway). Both pathways lead to the formation of dihydroxyacetone phosphate, an intermediate of glycolysis. It was assumed that the glpK pathway operates during aerobiosis and that the dhaK pathway operates under anaerobic conditions. Because this had not been analyzed by a genetic study, we constructed mutants of strain JH2-2 affected in both pathways. The growth of these mutants on glycerol under aerobic and anaerobic conditions was monitored. In contrast to the former model, results strongly suggest that glycerol is catabolized simultaneously by both pathways in the E. faecalis JH2-2 strain in the presence of oxygen. In accordance with the former model, glycerol is metabolized by the dhaK pathway under anaerobic conditions. Comparison of different E. faecalis isolates revealed an impressive diversity of growth behaviors on glycerol. Analysis by BLAST searching and real-time reverse transcriptase PCR revealed that this diversity is based not on different gene contents but rather on differences in gene expression. Some strains used preferentially the glpK pathway whereas others probably exclusively the dhaK pathway under aerobic conditions. Our results demonstrate that the species E. faecalis cannot be represented by only one model of aerobic glycerol catabolism.