Jean-Christophe Houzel
Federal University of Rio de Janeiro
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jean-Christophe Houzel.
Journal of Clinical Investigation | 2012
Theresa R. Bomfim; Leticia Forny-Germano; Luciana B. Sathler; Jordano Brito-Moreira; Jean-Christophe Houzel; Helena Decker; Michael A. Silverman; Hala Kazi; Helen M. Melo; Paula L. McClean; Christian Hölscher; Steven E. Arnold; Konrad Talbot; William L. Klein; Douglas P. Munoz; Sergio T. Ferreira; Fernanda G. De Felice
Defective brain insulin signaling has been suggested to contribute to the cognitive deficits in patients with Alzheimers disease (AD). Although a connection between AD and diabetes has been suggested, a major unknown is the mechanism(s) by which insulin resistance in the brain arises in individuals with AD. Here, we show that serine phosphorylation of IRS-1 (IRS-1pSer) is common to both diseases. Brain tissue from humans with AD had elevated levels of IRS-1pSer and activated JNK, analogous to what occurs in peripheral tissue in patients with diabetes. We found that amyloid-β peptide (Aβ) oligomers, synaptotoxins that accumulate in the brains of AD patients, activated the JNK/TNF-α pathway, induced IRS-1 phosphorylation at multiple serine residues, and inhibited physiological IRS-1pTyr in mature cultured hippocampal neurons. Impaired IRS-1 signaling was also present in the hippocampi of Tg mice with a brain condition that models AD. Importantly, intracerebroventricular injection of Aβ oligomers triggered hippocampal IRS-1pSer and JNK activation in cynomolgus monkeys. The oligomer-induced neuronal pathologies observed in vitro, including impaired axonal transport, were prevented by exposure to exendin-4 (exenatide), an anti-diabetes agent. In Tg mice, exendin-4 decreased levels of hippocampal IRS-1pSer and activated JNK and improved behavioral measures of cognition. By establishing molecular links between the dysregulated insulin signaling in AD and diabetes, our results open avenues for the investigation of new therapeutics in AD.
Cell Metabolism | 2013
Mychael V. Lourenco; Julia R. Clarke; Rudimar Luiz Frozza; Theresa R. Bomfim; Leticia Forny-Germano; André F. Batista; Luciana B. Sathler; Jordano Brito-Moreira; Olavo B. Amaral; Cesar Silva; Léo Freitas-Correa; Sheila Espírito-Santo; Paula Campello-Costa; Jean-Christophe Houzel; William L. Klein; Christian Hölscher; José B.C. Carvalheira; Aristóbolo M. Silva; Lício A. Velloso; Douglas P. Munoz; Sergio T. Ferreira; Fernanda G. De Felice
Alzheimers disease (AD) and type 2 diabetes appear to share similar pathogenic mechanisms. dsRNA-dependent protein kinase (PKR) underlies peripheral insulin resistance in metabolic disorders. PKR phosphorylates eukaryotic translation initiation factor 2α (eIF2α-P), and AD brains exhibit elevated phospho-PKR and eIF2α-P levels. Whether and how PKR and eIF2α-P participate in defective brain insulin signaling and cognitive impairment in AD are unknown. We report that β-amyloid oligomers, AD-associated toxins, activate PKR in a tumor necrosis factor α (TNF-α)-dependent manner, resulting in eIF2α-P, neuronal insulin receptor substrate (IRS-1) inhibition, synapse loss, and memory impairment. Brain phospho-PKR and eIF2α-P were elevated in AD animal models, including monkeys given intracerebroventricular oligomer infusions. Oligomers failed to trigger eIF2α-P and cognitive impairment in PKR(-/-) and TNFR1(-/-) mice. Bolstering insulin signaling rescued phospho-PKR and eIF2α-P. Results reveal pathogenic mechanisms shared by AD and diabetes and establish that proinflammatory signaling mediates oligomer-induced IRS-1 inhibition and PKR-dependent synapse and memory loss.
The FASEB Journal | 2001
Fernanda G. De Felice; Jean-Christophe Houzel; José Garcia-Abreu; Paulo Roberto Louzada; Rosenilde C. de Holanda Afonso; M. Nazareth L. Meirelles; Roberto Lent; Vivaldo Moura Neto; Sergio T. Ferreira
Alzheimers disease (AD) is a major public health problem, and there is currently no clinically accepted treatment to cure it or to stop its progression. Fibrillar aggregates of the β–amyloid peptide (Aβ) are major constituents of the senile plaques found in the brains of AD patients and have been related to AD neurotoxicity. Here it is shown that nitrophenols prevent aggregation and cause disaggregation of Aβ fibrils and that they strongly prevent the neurotoxicity of Aβ to rat hippocampal neurons in culture. Furthermore, by using an in vivo model system of cerebral amyloid deposition, it is shown that nitrophenols cause a marked reduction in the volume occupied by amyloid deposits in the hippocampi of rats. These results raise the possibility that nitrophenols or their derivatives may be useful lead compounds for the development of drugs to prevent the neurotoxicity and deposition of Aβ in AD.
European Journal of Neuroscience | 1994
Jean-Christophe Houzel; Chantal Milleret; Giorgio M. Innocenti
Seventeen callosally projecting axons originating near the border between areas 17 and 18 in adult cats were anterogradely labelled with biocytin and reconstructed in 3‐D from serial sections. All axons terminated near the contralateral 17/18 border. However, they differed in their diameter, tangential and radial distributions, and overall geometry of terminal arbors. Diameters of reconstructed axons ranged between 0.45 and 2.25 μm. Most of the axons terminated in multiple terminal columns scattered over several square millimetres of cortex. Thus in general callosal connections are not organized according to simple, point‐to‐point spatial mapping rules. Usually terminal boutons were more numerous in supragranular layers; some were also found in infragranular layers, none in layer IV. However, a few axons were distributed only or mainly in layer IV, others included this layer in their termination. Thus, different callosal axons may selectively activate distinct cell populations. The geometry of terminal arbors defined two types of architecture, which were sometimes represented in the same axon: parallel architecture was characterized by branches of considerable length which supplied different columns or converged onto the same column; serial architecture was characterized by a tangentially running trunk or main branch with radial collaterals to the cortex. These architectures may relate to temporal aspects of inter‐hemispheric interactions. In conclusion, communication between corresponding areas of the two hemispheres appears to use channels with different morphological and probably functional properties.
European Journal of Neuroscience | 1994
Giorgio M. Innocenti; Patricia Lehmann; Jean-Christophe Houzel
We analysed the activation profiles obtained by simulating invasion of an orthodromic action potential in eleven anterogradely filled and serially reconstructed terminal arbors of callosal axons originating and terminating in areas 17 and 18 of the adult cat. This was done in order to understand how geometry relates to computational properties of axons. In the simulation, conduction from the callosal midline to the first bouton caused activation latencies of 0.9‐3.2 ms, compatible with published electrophysiological values. Activation latencies of the total set of terminal boutons varied across arbors between 0.3 and 2.7 ms. Arbors distributed boutons in tangentially segregated terminal columns spanning one or, more often, several layers. Individual columns of one axon were frequently activated synchronously or else within a few hundred microseconds of each other. Synchronous activation of spatially separate columns is achieved by: (i) long primary or secondary branches of similar calibre running nearly parallel to each other for several millimetres; (ii) variations in the calibre of branches serially fed to separate columns by the same primary or secondary branch; (iii) exchange of high‐order or preterminal branches across columns. The long, parallel branches blatantly violate principles of axonal economy. Simulated alterations of the axonal arbors indicate that similar spatiotemporal patterns of activity could, in principle, be obtained by less axon‐costly architectures. The structure of axonal arbors, therefore, may not be determined solely by the type of spatiotemporal activation profiles it achieves in the cortex but also by other constraints, in particular those imposed by developmental mechanisms.
The Journal of Neuroscience | 2014
Leticia Forny-Germano; Natalia M. Lyra e Silva; André F. Batista; Jordano Brito-Moreira; Matthias Gralle; Susan E. Boehnke; Brian C. Coe; Ann Lablans; Suelen A. Marques; Ana Maria Blanco Martinez; William L. Klein; Jean-Christophe Houzel; Sergio T. Ferreira; Douglas P. Munoz; Fernanda G. De Felice
Alzheimers disease (AD) is a devastating neurodegenerative disorder and a major medical problem. Here, we have investigated the impact of amyloid-β (Aβ) oligomers, AD-related neurotoxins, in the brains of rats and adult nonhuman primates (cynomolgus macaques). Soluble Aβ oligomers are known to accumulate in the brains of AD patients and correlate with disease-associated cognitive dysfunction. When injected into the lateral ventricle of rats and macaques, Aβ oligomers diffused into the brain and accumulated in several regions associated with memory and cognitive functions. Cardinal features of AD pathology, including synapse loss, tau hyperphosphorylation, astrocyte and microglial activation, were observed in regions of the macaque brain where Aβ oligomers were abundantly detected. Most importantly, oligomer injections induced AD-type neurofibrillary tangle formation in the macaque brain. These outcomes were specifically associated with Aβ oligomers, as fibrillar amyloid deposits were not detected in oligomer-injected brains. Human and macaque brains share significant similarities in terms of overall architecture and functional networks. Thus, generation of a macaque model of AD that links Aβ oligomers to tau and synaptic pathology has the potential to greatly advance our understanding of mechanisms centrally implicated in AD pathogenesis. Furthermore, development of disease-modifying therapeutics for AD has been hampered by the difficulty in translating therapies that work in rodents to humans. This new approach may be a highly relevant nonhuman primate model for testing therapeutic interventions for AD.
European Journal of Neuroscience | 1994
Chantal Milleret; Jean-Christophe Houzel; Pierre Buser
The aim of this study was to investigate the development of visual callosal transfer in the normally reared cat. Two‐ to nine‐week‐old kittens and adults (used as controls) underwent section of the optic chiasm. Three days later, the animals were placed under anaesthesia and paralysed; unit activities were recorded from visual cortical areas 17 and 18 and from the white matter in one hemisphere. The units were tested for their responses to visual stimulation of each eye successively. Out of 1036 recorded neurons, 185 could be activated through the eye contralateral to the explored cortex via callosal transfer. Most of them could also be driven through the ipsilateral eye via the ‘direct’ geniculo‐cortical pathway. For animals aged ≤2 weeks, virtually all of these units were located at the 17/18 border zone, with a majority in the supragranular layers. When activated through the corpus callosum, they displayed receptive fields located either on the central vertical meridian of the visual field or in the hemifield ipsilateral to the explored cortex. Such extension into the ipsilateral hemifield as well as receptive field disparities of binocular units decreased with age, while spontaneous activity, strength of response, orientation selectivity and ability to respond to slits moving at middle‐range velocity increased. The main conclusion is that the transient callosal projections described by anatomists, which are present until 3 months of age, do not achieve supraliminar synaptic contacts with parts of areas 17 and 18 other than the 17/18 border zone, at least from 12 days after birth. However the visual callosal transfer in young animals displays some characteristics which disappear with age.
European Journal of Neuroscience | 2001
Chantal Milleret; Jean-Christophe Houzel
Commissural connections between primary visual cortical maps of the two hemispheres are essential to unify the split representation of the visual field. In normal adult cats, callosal connections are essentially restricted to the border between areas A17 and A18, where the central vertical meridian is projected. In contrast, early convergent strabismus leads to an expanded callosal‐receiving zone, as repeatedly indicated by anatomical experiments. We investigated here the functional correlates of this widespread distribution of callosal terminals by analysing transcallosal visual responses in five anaesthetized and paralysed 4–10‐month‐old cats whose right eye had been surgically deviated on postnatal day 6. After acute section of the optic chiasm, single‐unit activity was recorded from A17 and A18 of the right hemisphere while the left eye was visually stimulated. A total of 108/406 units were transcallosally activated. While they were more frequent at the 17/18 border (46% of the units recorded within this region), numerous transcallosally activated units were located throughout A17 (16%), A18 (27%) or within the white matter (17%). In all regions, transcallosally driven units displayed functional deficits usually associated with strabismus, such as decreased binocularity and ability to respond to fast‐moving stimuli, and increased receptive field size. Many units also displayed reduced orientation selectivity and increased position disparity. In addition, transcallosal receptive fields were manifestly located within the hemifield ipsilateral to the explored cortex, with almost no contact with the central vertical meridian. Comparison with data from normal adults revealed that strabismus induced a considerable expansion of the callosal receiving zone, both in terms of the cortical region and of the extent of the visual field involved in interhemispheric transfer, with implications in the integration of visual information across the hemispheres.
Brazilian Journal of Medical and Biological Research | 2002
Jean-Christophe Houzel; M.L. Carvalho; Roberto Lent
In the last five years, a number of detailed anatomical, electrophysiological, optical imaging and simulation studies performed in a variety of non-human species have revealed that the functional organization of callosal connections between primary visual areas is more elaborate than previously thought. Callosal cell bodies and terminals are clustered in columns whose correspondence to features mapped in the visual cortex, such as orientation and ocularity, are starting to be understood. Callosal connections are not restricted to the vertical midline representation nor do they establish merely point-to-point retinotopic correspondences across the hemispheres, as traditionally believed. In addition, anatomical studies have revealed the existence of an ipsilateral component of callosal axons. The aim of this short review is to propose how these new data can be integrated into an updated scheme of the circuits responsible for assembling the primary visual field map.
Journal of Visualized Experiments | 2010
Fabio Silva Lima da Conceição; Stacie Ngo-Abdalla; Jean-Christophe Houzel; Stevens K. Rehen
Parkinsons disease (PD) affects at least 6.5 million people worldwide, irrespective of gender, social, ethnic, economic, or geographic boundaries. Key symptoms, such as tremor, rigidity and bradikinesia, develop when about 3/4 of dopaminergic cells are lost in the substantia nigra, and fail to provide for the smooth, coordinated regulation of striatal motor circuits. Depression and hallucinations are common, and dementia eventually occurs in 20% of patients. At this time, there is no treatment to delay or stop the progression of PD. Rather, the medications currently available aim more towards the alleviation of these symptoms. New surgical strategies may reversibly switch on the functionally damaged circuits through the electrical stimulation of deep brain structures, but although deep brain stimulation is a major advance, it is not suitable for all patients. It remains therefore necessary to test new cell therapy approaches in preclinical models. Selective neurotoxic disruption of dopaminergic pathways can be reproduced by injection of 6-hydroxydopamine (6-OHDA) or MPTP (1-methyl-4-phenyl-1,2,3,6-tertahydropyridine) whereas depleting drugs and oxidative-damaging chemicals may also reproduce specific features of PD in rodents. Unlike MPTP, 6-OHDA lesions cause massive irreversible neuronal loss, and can be uni- or bilateral. The 6-OHDA lesion model is reliable, leads to robust motor deficits, and is the most widely used after 40 years of research in rats1. As interactions between grafted cells and host can now be studied more thoroughly in mice rather than in rats, the model has been transposed to mice2,3, where it has been recently characterized4. In this video, we demonstrate how to lesion the left nigro-striatal pathway of anesthetized mice by slowly delivering 2.0 μL of 6-OHDA through a stereotaxically inserted micro-syringe needle. The loss of dopaminergic input occurs within days, and the functional impairments can be monitored over post-operative weeks and months by rating animal rotations induced by dopaminergic agents5. Here, we show full-body contralateral rotations occurring 10 minutes after a single subcutaneous administration of apomorphine, measured one month after the lesion. Outcomes and drawbacks are discussed below.