Jean-Claude Belfiore
Télécom ParisTech
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jean-Claude Belfiore.
IEEE Communications Letters | 2000
Oussama Damen; Ammar Chkeif; Jean-Claude Belfiore
We explore the lattice sphere packing representation of a multi-antenna system and the algebraic space-time (ST) codes. We apply the sphere decoding (SD) algorithm to the resulted lattice code. For the uncoded system, SD yields, with small increase in complexity, a huge improvement over the well-known V-BLAST detection algorithm. SD of algebraic ST codes exploits the full diversity of the coded multi-antenna system, and makes the proposed scheme very appealing to take advantage of the richness of the multi-antenna environment. The fact that the SD does not depend on the constellation size, gives rise to systems with very high spectral efficiency, maximum-likelihood performance, and low decoding complexity.
IEEE Transactions on Information Theory | 2005
Jean-Claude Belfiore; Ghaya Rekaya; Emanuele Viterbo
In this paper, the Golden code for a 2/spl times/2 multiple-input multiple-output (MIMO) system is presented. This is a full-rate 2/spl times/2 linear dispersion algebraic space-time code with unprecedented performance based on the Golden number 1+/spl radic/5/2.
international symposium on information theory | 2004
Jean-Claude Belfiore; Ghaya Rekaya; Emanuele Viterbo
In this paper we present the Golden code for a 2times2 MIMO system. This is a full-rate 2times2 linear dispersion algebraic space-time code with unprecedented performance based on the Golden number 1+radic5/2
IEEE Transactions on Information Theory | 2006
Frédérique E. Oggier; Ghaya Rekaya; Jean-Claude Belfiore; Emanuele Viterbo
In this paper, we introduce the notion of perfect space-time block codes (STBCs). These codes have full-rate, full-diversity, nonvanishing constant minimum determinant for increasing spectral efficiency, uniform average transmitted energy per antenna and good shaping. We present algebraic constructions of perfect STBCs for 2, 3, 4, and 6 antennas
IEEE Transactions on Information Theory | 2002
Mohamed Oussama Damen; Karim Abed-Meraim; Jean-Claude Belfiore
We construct a new family of linear space-time (ST) block codes by the combination of rotated constellations and the Hadamard transform, and we prove them to achieve the full transmit diversity over a quasi-static or fast fading channels. The proposed codes transmit at a normalized rate of 1 symbol/s. When the number of transmit antennas n=1, 2, or n is a multiple of four, we spread a rotated version of the information symbol vector by the Hadamard transform and send it over n transmit antennas and n time periods; for other values of n, we construct the codes by sending the components of a rotated version of the information symbol vector over the diagonal of an n /spl times/ n ST code matrix. The codes maintain their rate, diversity, and coding gains for all real and complex constellations carved from the complex integers ring Z [i], and they outperform the codes from orthogonal design when using complex constellations for n > 2. The maximum-likelihood (ML) decoding of the proposed codes can be implemented by the sphere decoder at a moderate complexity. It is shown that using the proposed codes in a multiantenna system yields good performances with high spectral efficiency and moderate decoding complexity.
IEEE Transactions on Information Theory | 1996
Joseph Jean Boutros; Emanuele Viterbo; C. Rastello; Jean-Claude Belfiore
Recent work on lattices matched to the Rayleigh fading channel has shown how to construct good signal constellations with high spectral efficiency. We present a new family of lattice constellations, based on complex algebraic number fields, which have good performance on Rayleigh fading channels. Some of these lattices also present a reasonable packing density and thus may be used at the same time over a Gaussian channel. Conversely, we show that particular versions of the best lattice packings (D/sub 4/, E/sub 6/, E/sub 8/, K/sub 12/, /spl Lambda//sub 16/, /spl Lambda//sub 24/), constructed from totally complex algebraic cyclotomic fields, present better performance over the Rayleigh fading channel. The practical interest in such signal constellations rises from the need to transmit information at high rates over both terrestrial and satellite links. Some further results in algebraic number theory related to ideals and their factorization are presented and the decoding algorithm used with these lattice constellations are illustrated together with practical results.
IEEE Transactions on Information Theory | 2007
Sheng Yang; Jean-Claude Belfiore
In this work, we extend the nonorthogonal amplify-and-forward (NAF) cooperative diversity scheme to the multiple-input multiple-output (MIMO) channel. A family of space-time block codes for a half-duplex MIMO NAF fading cooperative channel with N relays is constructed. The code construction is based on the nonvanishing determinant (NVD) criterion and is shown to achieve the optimal diversity-multiplexing tradeoff (DMT) of the channel. We provide a general explicit algebraic construction, followed by some examples. In particular, in the single-relay case, it is proved that the Golden code and the 4times4 Perfect code are optimal for the single-antenna and two-antenna cases, respectively. Simulation results reveal that a significant gain (up to 10 dB) can be obtained with the proposed codes, especially in the single-antenna case
IEEE Transactions on Information Theory | 2007
Sheng Yang; Jean-Claude Belfiore
In a slow-fading channel, how to find a cooperative diversity scheme that achieves the transmit diversity bound is still an open problem. In fact, all previously proposed amplify-and-forward (AF) and decode-and-forward (DF) schemes do not improve with the number of relays in terms of the diversity-multiplexing tradeoff (DMT) for multiplexing gains r higher than 0.5. In this work, the class of slotted amplify-and-forward (SAF) schemes is studied. First, an upper bound on the DMT for any SAF scheme with an arbitrary number of relays N and number of slots M is established. Then, a sequential SAF scheme that can exploit the potential diversity gain in the high multiplexing gain regime is proposed. More precisely, in certain conditions, the sequential SAF scheme achieves the proposed DMT upper bound which tends to the transmit diversity bound when M goes to infinity. In particular, for the two-relay case, the three-slot sequential SAF scheme achieves the proposed upper bound and outperforms the two-relay nonorthorgonal amplify-and-forward (NAF) scheme of Azarian for multiplexing gains r les 2/3. Numerical results reveal a significant gain of our scheme over the previously proposed AF schemes, especially in high spectral efficiency and large network size regime.
Wireless Personal Communications | 1997
Ralf Haas; Jean-Claude Belfiore
In multicarrier transmission schemes, the essential requirement on the elementary pulse or envelope function is the orthogonality with its time-frequency shifted versions. However, the time and frequency dispersion of the mobile radio channel leads to the loss of orthogonality which produces intersymbol interference (ISI) and interchannel interference (ICI). Therefore, another requirement on the elementary pulse has to be imposed: the good localization in time and frequency. Based on the characteristics of the mobile radio channel, we design a new pulse to minimize ICI and ISI.
information theory workshop | 2003
Jean-Claude Belfiore; Ghaya Rekaya
We propose an algebraic framework for studying coherent space-time codes, based on arithmetic lattices on central simple algebras. For two transmit antennas, this algebra is called a quaternion algebra. For this reason, we call these lattices quaternionic lattices. The design criterion is the one described by V. Tarokh et al. (see IEEE Trans. Inf. Theory, vol.44, p.744-65, 1998).