Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jean-Claude Dreher is active.

Publication


Featured researches published by Jean-Claude Dreher.


The Journal of Neuroscience | 2010

Separate Valuation Subsystems for Delay and Effort Decision Costs

Charlotte Prévost; Mathias Pessiglione; Elise Météreau; Marie-Laure Cléry-Melin; Jean-Claude Dreher

Decision making consists of choosing among available options on the basis of a valuation of their potential costs and benefits. Most theoretical models of decision making in behavioral economics, psychology, and computer science propose that the desirability of outcomes expected from alternative options can be quantified by utility functions. These utility functions allow a decision maker to assign subjective values to each option under consideration by weighting the likely benefits and costs resulting from an action and to select the one with the highest subjective value. Here, we used model-based neuroimaging to test whether the human brain uses separate valuation systems for rewards (erotic stimuli) associated with different types of costs, namely, delay and effort. We show that humans devalue rewards associated with physical effort in a strikingly similar fashion to those they devalue that are associated with delays, and that a single computational model derived from economics theory can account for the behavior observed in both delay discounting and effort discounting. However, our neuroimaging data reveal that the human brain uses distinct valuation subsystems for different types of costs, reflecting in opposite fashion delayed reward and future energetic expenses. The ventral striatum and the ventromedial prefrontal cortex represent the increasing subjective value of delayed rewards, whereas a distinct network, composed of the anterior cingulate cortex and the anterior insula, represent the decreasing value of the effortful option, coding the expected expense of energy. Together, these data demonstrate that the valuation processes underlying different types of costs can be fractionated at the cerebral level.


The Journal of Neuroscience | 2010

The Architecture of Reward Value Coding in the Human Orbitofrontal Cortex

Guillaume Sescousse; Jérôme Redouté; Jean-Claude Dreher

To ensure their survival, animals exhibit a number of reward-directed behaviors, such as foraging for food or searching for mates. This suggests that a core set of brain regions may be shared by many species to process different types of rewards. Conversely, many new brain areas have emerged over the course of evolution, suggesting potential specialization of specific brain regions in the processing of more recent rewards such as money. Here, using functional magnetic resonance imaging in humans, we identified the common and distinct brain systems processing the value of erotic stimuli and monetary gains. First, we provide evidence that a set of neural structures, including the ventral striatum, anterior insula, anterior cingulate cortex, and midbrain, encodes the subjective value of rewards regardless of their type, consistent with a general hedonic representation. More importantly, our results reveal reward-specific representations in the orbitofrontal cortex (OFC): whereas the anterior lateral OFC, a phylogenetically recent structure, processes monetary gains, the posterior lateral OFC, phylogenetically and ontogenetically older, processes more basic erotic stimuli. This dissociation between OFC representations of primary and secondary rewards parallels current views on lateral prefrontal cortex organization in cognitive control, suggesting an increasing trend in complexity along a postero-anterior axis according to more abstract representations. Together, our results support a modular view of reward value coding in the brain and propose that a unifying principle of postero-anterior organization can be applied to the OFC.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Fractionating the neural substrate of cognitive control processes

Jean-Claude Dreher; Karen Faith Berman

Psychological and neurobiological theories of cognitive control must account for flexible, seemless transitions among cognitive operations. When subjects switch between tasks, they must both inhibit the previous task and re-engage in a different task. Inhibition of the disengaged task remains active for a period of time and has to be overcome when re-engaging in the same task. Here we used a task-switching paradigm that allows distinction of two control processes: overcoming the inhibition of a previously performed task when re-engaging it and restarting a sequence of tasks after a period of interruption. Behaviorally, these processes were reflected in the facts that: (i) switching to a recently performed task, that is thus unlikely to have fully recovered from inhibition, takes longer than switching to a task less recently performed and (ii) re-engaging in a sequence of tasks after a period of interruption transiently increases response time. Using event-related functional MRI, we found that these two behavioral effects were accompanied by a double dissociation: the right lateral prefrontal cortex was more activated when switching to a task recently performed compared to a task less recently performed, while the anterior cingulate cortex was recruited when a sequence of tasks was initiated. These results provide insights into the functional organization of the frontal lobe in humans and its role in distinct processes involved in cognitive control.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Age-related changes in midbrain dopaminergic regulation of the human reward system.

Jean-Claude Dreher; Andreas Meyer-Lindenberg; Philip Kohn; Karen Faith Berman

The dopamine system, which plays a crucial role in reward processing, is particularly vulnerable to aging. Significant losses over a normal lifespan have been reported for dopamine receptors and transporters, but very little is known about the neurofunctional consequences of this age-related dopaminergic decline. In animals, a substantial body of data indicates that dopamine activity in the midbrain is tightly associated with reward processing. In humans, although indirect evidence from pharmacological and clinical studies also supports such an association, there has been no direct demonstration of a link between midbrain dopamine and reward-related neural response. Moreover, there are no in vivo data for alterations in this relationship in older humans. Here, by using 6-[18F]FluoroDOPA (FDOPA) positron emission tomography (PET) and event-related 3T functional magnetic resonance imaging (fMRI) in the same subjects, we directly demonstrate a link between midbrain dopamine synthesis and reward-related prefrontal activity in humans, show that healthy aging induces functional alterations in the reward system, and identify an age-related change in the direction of the relationship (from a positive to a negative correlation) between midbrain dopamine synthesis and prefrontal activity. These results indicate an age-dependent dopaminergic tuning mechanism for cortical reward processing and provide system-level information about alteration of a key neural circuit in healthy aging. Taken together, our findings provide an important characterization of the interactions between midbrain dopamine function and the reward system in healthy young humans and older subjects, and identify the changes in this regulatory circuit that accompany aging.


Brain | 2013

Imbalance in the sensitivity to different types of rewards in pathological gambling

Guillaume Sescousse; Guillaume Barbalat; Philippe Domenech; Jean-Claude Dreher

Pathological gambling is an addictive disorder characterized by a persistent and compulsive desire to engage in gambling activities. This maladaptive behaviour has been suggested to result from a decreased sensitivity to experienced rewards, regardless of reward type. Alternatively, pathological gambling might reflect an imbalance in the sensitivity to monetary versus non-monetary incentives. To directly test these two hypotheses, we examined how the brain reward circuit of pathological gamblers responds to different types of rewards. Using functional magnetic resonance imaging, we compared the brain responses of 18 pathological gamblers and 20 healthy control subjects while they engaged in a simple incentive task manipulating both monetary and visual erotic rewards. During reward anticipation, the ventral striatum of pathological gamblers showed a differential response to monetary versus erotic cues, essentially driven by a blunted reactivity to cues predicting erotic stimuli. This differential response correlated with the severity of gambling symptoms and was paralleled by a reduced behavioural motivation for erotic rewards. During reward outcome, a posterior orbitofrontal cortex region, responding to erotic rewards in both groups, was further recruited by monetary gains in pathological gamblers but not in control subjects. Moreover, while ventral striatal activity correlated with subjective ratings assigned to monetary and erotic rewards in control subjects, it only correlated with erotic ratings in gamblers. Our results point to a differential sensitivity to monetary versus non-monetary rewards in pathological gambling, both at the motivational and hedonic levels. Such an imbalance might create a bias towards monetary rewards, potentially promoting addictive gambling behaviour.


The Journal of Neuroscience | 2010

Decision Threshold Modulation in the Human Brain

Philippe Domenech; Jean-Claude Dreher

Perceptual decisions are made when sensory evidence accumulated over time reaches a decision threshold. Because decisions are also guided by prior information, one important factor that is likely to shape how a decision is adaptively tuned to its context is the predictability of forthcoming events. However, little is known about the mechanisms underlying this contextual regulation of the perceptual decision-making process. Mathematical models of decision making predict two possible mechanisms supporting this regulation: an adjustment of the distance to the decision threshold, which leads to a change in the amount of accumulated evidence required to make a decision, or a gain control of the sensory evidence, leading to a change in the slope of the sensory evidence accumulation. Here, we show that predictability of the forthcoming event reduces the distance to the threshold of the decision. Then, combining model-driven fMRI and the framework of information theory, we show that the anterior cingulate cortex (ACC) adjusts the distance to the decision threshold in proportion to the current amount of predictive information and that the dorsolateral cortex (DLPFC) codes the accumulation of sensory evidence. Moreover, the information flow from the ACC to the DLPFC region that accumulates sensory evidence increases when optimal adjustment of the distance to the threshold requires more complex computations, reflecting the increased weight of ACCs regulation signals in the decision process. Our results characterize the respective contributions of the ACC and the DLPFC to contextually optimized decision making.


Annals of the New York Academy of Sciences | 2007

Hormonal and Genetic Influences on Processing Reward and Social Information

Xavier Caldú; Jean-Claude Dreher

Abstract:  Social neuroscience is an emerging interdisciplinary field that combines tools from cognitive, cellular, and molecular neuroscience to understand the neural mechanisms underlying human interactions, emphasizing the complementary nature of different organization levels in the social and biological domains. Previous studies focused on the molecular/neuronal substrates of a variety of complex behaviors, such as parental behavior and pair bonding. Less is known about the various factors influencing interindividual differences in reward processing and decision making in social contexts, both relying upon the dopaminergic system. This review concerns (1) basic electrophysiological findings and recent neuroimaging findings showing that reward processing and social interaction processes share common neural substrates and (2) genetic and hormonal influences on these processes. Recent research combining molecular genetics, endocrinology, and neuroimaging demonstrated that variations in dopamine‐related genes and in hormone levels affect the physiological properties of the dopaminergic system in nonhuman primates and modulate the processing of reward and social information in humans. These findings are important because they indicate the neural influence of genes conferring vulnerability to develop neuropathologies such as drug addiction and pathological gambling. Taken together, the reviewed data start to unveil the relationships between genes, hormones, and the functioning of the reward system, as well as decision making in social contexts, and provide a link between molecular, cellular, and social cognitive levels in humans.


The Journal of Neuroscience | 2014

Additive Gene–Environment Effects on Hippocampal Structure in Healthy Humans

Ulrich Rabl; Bernhard M. Meyer; Kersten Diers; Lucie Bartova; Andreas Berger; Dominik Mandorfer; Ana Popovic; Christian Scharinger; Julia Huemer; Klaudius Kalcher; Gerald Pail; X Helmuth Haslacher; Thomas Perkmann; X Christian Windischberger; Burkhard Brocke; X Harald H. Sitte; Daniela D. Pollak; Jean-Claude Dreher; Siegfried Kasper; Nicole Praschak-Rieder; Ewald Moser; Harald Esterbauer; Lukas Pezawas

Hippocampal volume loss has been related to chronic stress as well as genetic factors. Although genetic and environmental variables affecting hippocampal volume have extensively been studied and related to mental illness, limited evidence is available with respect to G × E interactions on hippocampal volume. The present MRI study investigated interaction effects on hippocampal volume between three well-studied functional genetic variants (COMT Val158Met, BDNF Val66Met, 5-HTTLPR) associated with hippocampal volume and a measure of environmental adversity (life events questionnaire) in a large sample of healthy humans (n = 153). All three variants showed significant interactions with environmental adversity with respect to hippocampal volume. Observed effects were additive by nature and driven by both recent as well as early life events. A consecutive analysis of hippocampal subfields revealed a spatially distinct profile for each genetic variant suggesting a specific role of 5-HTTLPR for the subiculum, BDNF Val66Met for CA4/dentate gyrus, and COMT Val158Met for CA2/3 volume changes. The present study underscores the importance of G × E interactions as determinants of hippocampal volume, which is crucial for the neurobiological understanding of stress-related conditions, such as mood disorders or post-traumatic stress disorder (PTSD).


Cortex | 2013

Long-lasting effects of performance-contingent unconscious and conscious reward incentives during cued task-switching

Rémi L. Capa; Cédric A. Bouquet; Jean-Claude Dreher; André Dufour

Motivation is often thought to interact consciously with executive control, although recent studies have indicated that motivation can also be unconscious. To date, however, the effects of unconscious motivation on high-order executive control functions have not been explored. Only a few studies using subliminal stimuli (i.e., those not related to motivation, such as an arrow to prime a response) have reported short-lived effects on high-order executive control functions. Here, building on research on unconscious motivation, in which a behavior of perseverance is induced to attain a goal, we hypothesized that subliminal motivation can have long-lasting effects on executive control processes. We investigated the impact of unconscious/conscious monetary reward incentives on evoked potentials and neural activity dynamics during cued task-switching performance. Participants performed long runs of task-switching. At the beginning of each run, a reward (50 cents or 1 cent) was displayed, either subliminally or supraliminally. Participants earned the reward contingent upon their correct responses to each trial of the run. A higher percentage of runs was achieved with higher (conscious and unconscious) than lower rewards, indicating that unconscious high rewards have long-lasting behavioral effects. Event-related potential (ERP) results indicated that unconscious and conscious rewards influenced preparatory effort in task preparation, as suggested by a greater fronto-central contingent negative variation (CNV) starting at cue-onset. However, a greater parietal P3 associated with better reaction times (RTs) was observed only under conditions of conscious high reward, suggesting a larger amount of working memory invested during task performance. Together, these results indicate that unconscious and conscious motivations are similar at early stages of task-switching preparation but differ during task performance.


The Journal of Neuroscience | 2009

The Hippocampus Codes the Uncertainty of Cue–Outcome Associations: An Intracranial Electrophysiological Study in Humans

Giovanna Vanni-Mercier; François Mauguière; Jean Isnard; Jean-Claude Dreher

Learning to predict upcoming outcomes based on environmental cues is essential for adaptative behavior. In monkeys, midbrain dopaminergic neurons code two statistical properties of reward: a prediction error at the outcome and uncertainty during the delay period between cues and outcomes. Although the hippocampus is sensitive to reward processing, and hippocampal–midbrain functional interactions are well documented, it is unknown whether it also codes the statistical properties of reward information. To address this question, we recorded local field potentials from intracranial electrodes in human hippocampus while subjects learned to associate cues of slot machines with various monetary reward probabilities (P). We found that the amplitudes of negative event-related potentials covaried with uncertainty at the outcome, being maximal for P = 0.5 and minimal for P = 0 and P = 1, regardless of winning or not. These results show that the hippocampus computes an uncertainty signal that may constitute a fundamental mechanism underlying the role of this brain region in a number of functions, including attention-based learning, associative learning, probabilistic classification, and binding of stimulus elements.

Collaboration


Dive into the Jean-Claude Dreher's collaboration.

Top Co-Authors

Avatar

Karen Faith Berman

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Elise Météreau

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seongmin A. Park

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip Kohn

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Giovanna Vanni-Mercier

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Xavier Caldú

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge