Jean-Claude Labbé
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jean-Claude Labbé.
Cell | 1990
Marion Peter; J. Nakagawa; Marcel Dorée; Jean-Claude Labbé; Erich A. Nigg
The nuclear lamina is an intermediate filament-type network underlying the inner nuclear membrane. Phosphorylation of lamin proteins is believed to cause lamina disassembly during meiotic and mitotic M phase, but the M phase-specific lamin kinase has not been identified. Here we show that the cdc2 kinase, a major element implicated in controlling the eukaryotic cell cycle, phosphorylates chicken B-type lamins in vitro on sites that are specifically phosphorylated during M phase in vivo. Concomitantly, cdc2 kinase is capable of inducing lamina depolymerization upon incubation with isolated nuclei. One of the target sites of cdc2 kinase is identified as a motif (SPTR) conserved in the N-terminal domain of all lamin proteins. These results lead us to propose that mitotic disassembly of the nuclear lamina results from direct phosphorylation of lamins by cdc2 kinase.
The EMBO Journal | 1993
Didier Fesquet; Jean-Claude Labbé; J Derancourt; J P Capony; Simon Galas; F Girard; Thierry Lorca; J Shuttleworth; Marcel Dorée; Jean-Claude Cavadore
Phosphorylation of Thr161, a residue conserved in all members of the cdc2 family, has been reported to be absolutely required for the catalytic activity of cdc2, the major regulator of eukaryotic cell cycle. In the present work, we have purified from starfish oocytes a kinase that specifically activates cdc2 in a cyclin‐dependent manner through phosphorylation of its Thr161 residue. Our most highly purified preparation contained only two major proteins of apparent M(r) 37 and 40 kDa (p37 and p40), which could not be separated from each other without loss of activity. The purified kinase was found to phosphorylate not only cdc2, but also cdk2 and a divergent cdc2‐like protein from Caenorhabditis, in chimeric complexes including both mitotic and G1/S cyclins. Extensive microsequencing of p40 did not reveal any convincing homology with any known protein. In contrast, p37 is the starfish homologue of the M015 gene product, a kinase previously cloned by homology probing from a Xenopus cDNA library. As expected, immunodepletion of the MO15 protein depleted Xenopus egg extracts of CAK (cdk‐activating kinase) activity, which was recovered in immunoprecipitates. Taken together, the above results demonstrate that MO15 is a gene conserved throughout evolution (at least from echinoderms to vertebrates) that encodes the catalytic subunit of a protein kinase that activates cdc2‐cdks complexes through phosphorylation of Thr161 (or its homologues).
Cell | 1990
M. Peter; J. Nakagawa; Marcel Dorée; Jean-Claude Labbé; Erich A. Nigg
Following the identification of the cdc2 kinase as a major element controlling entry of cells into mitosis, it is important to define the physiological target range of this enzyme. Here, we demonstrate that two major nucleolar proteins, nucleolin and NO38, are highly phosphorylated during mitosis. Importantly, the two nucleolar proteins are also phosphorylated by highly purified starfish cdc2 kinase in vitro, on sites that correspond to those observed specifically during mitosis in vivo. A repeated motif (TPXKK) is identified as the likely mitotic phosphoacceptor site in nucleolin, in that a synthetic peptide mimicking this site functions as both a substrate and a competitive inhibitor of cdc2 kinase. These results identify two novel candidate substrates for cdc2 kinase, and they implicate protein phosphorylation in controlling mitotic changes in nucleolar structure and activity.
Cell | 1989
Jean-Claude Labbé; A. Picard; G. Peaucellier; Jean-Claude Cavadore; P. Nurse; Marcel Dorée
MPF extracted from starfish oocytes copurifies with an M phase-specific H1 histone kinase encoded by a homolog of the fission yeast cell cycle control gene cdc2+. The most purified preparations contain p34cdc2 as the only major protein. Activation of the p34cdc2 kinase is correlated with appearance of the MPF activity both in vivo and in vitro. The increase in protein kinase activity is associated with p34cdc2 dephosphorylation and the decrease in protein kinase activity on leaving M phase with rephosphorylation. Microinjection of a peptide perfectly conserved in p34cdc2 from yeast to humans induces meiotic maturation, suggesting that an inhibitory component in G2 arrested oocytes interacts with this region of the p34cdc2 kinase. We propose that initiation of M phase is brought about by the dephosphorylation of p34cdc2, leading to increase in its protein kinase activity.
Cell | 2001
Ariane Abrieu; Laura Magnaghi-Jaulin; Jason A. Kahana; Marion Peter; Anna Castro; Suzanne Vigneron; Thierry Lorca; Don W. Cleveland; Jean-Claude Labbé
The mitotic checkpoint acts to inhibit entry into anaphase until all chromosomes have successfully attached to spindle microtubules. Unattached kinetochores are believed to release an activated form of Mad2 that inhibits APC/C-dependent ubiquitination and subsequent proteolysis of components needed for anaphase onset. Using Xenopus egg extracts, a vertebrate homolog of yeast Mps1p is shown here to be a kinetochore-associated kinase, whose activity is necessary to establish and maintain the checkpoint. Since high levels of Mad2 overcome checkpoint loss in Mps1-depleted extracts, Mps1 acts upstream of Mad2-mediated inhibition of APC/C. Mps1 is essential for the checkpoint because it is required for recruitment and retention of active CENP-E at kinetochores, which in turn is necessary for kinetochore association of Mad1 and Mad2.
Science | 2010
Aicha Gharbi-Ayachi; Jean-Claude Labbé; Andrew Burgess; Suzanne Vigneron; Jean-Marc Strub; Estelle Brioudes; Alain Van-Dorsselaer; Anna Castro; Thierry Lorca
Beyond the Greatwall Protein phosphorylation and dephosphorylation provide a central mechanism that controls the eukaryotic cell division cycle and entry of cells into mitosis. A form of protein phosphatase 2A (PP2A) has an important role inhibiting phosphorylation-dependent activation of cyclin-dependent kinase 1 (CDK1) itself and also dephosphorylating substrates of the active CDK1 that promote mitosis. PP2A activity is inhibited when another protein kinase, known as Greatwall, is activated (see the Perspective by Virshup and Kaldis). Mochida et al. (p. 1670) and Gharbi-Ayachi et al. (p. 1673) searched for substrates of Greatwall that might participate in the cell cycle regulatory machinery. When phosphorylated by Greatwall, a pair of small related proteins, Arpp19 and α-endosulfine, inhibited activity of PP2A. These effects were critical for regulation of mitosis in Xenopus egg extracts and in human cancer cells. Greatwall itself is phosphorylated and activated by CDK1—thus, apparently contributing to a feed-forward loop that contributes to the switchlike commitment of cells to mitosis. The protein kinase Greatwall controls cell division by phosphorylating and activating an inhibitor of protein phosphatase 2A. Initiation and maintenance of mitosis require the activation of protein kinase cyclin B–Cdc2 and the inhibition of protein phosphatase 2A (PP2A), which, respectively, phosphorylate and dephosphorylate mitotic substrates. The protein kinase Greatwall (Gwl) is required to maintain mitosis through PP2A inhibition. We describe how Gwl activation results in PP2A inhibition. We identified cyclic adenosine monophosphate–regulated phosphoprotein 19 (Arpp19) and α-Endosulfine as two substrates of Gwl that, when phosphorylated by this kinase, associate with and inhibit PP2A, thus promoting mitotic entry. Conversely, in the absence of Gwl activity, Arpp19 and α-Endosulfine are dephosphorylated and lose their capacity to bind and inhibit PP2A. Although both proteins can inhibit PP2A, endogenous Arpp19, but not α-Endosulfine, is responsible for PP2A inhibition at mitotic entry in Xenopus egg extracts.
The EMBO Journal | 1998
Thierry Lorca; Anna Castro; Martinez Am; Suzanne Vigneron; Nathalie Morin; Stephan J. Sigrist; Christian F. Lehner; Marcel Dorée; Jean-Claude Labbé
The Xenopus homologue of Drosophila Fizzy and budding yeast CDC20 has been characterized. The encoded protein (X‐FZY) is a component of a high molecular weight complex distinct from the APC/cyclosome. Antibodies directed against FZY were produced and shown to prevent calmodulin‐dependent protein kinase II (CaMKII) from inducing the metaphase to anaphase transition of spindles assembled in vitro in Xenopus egg extracts, and this was associated with suppression of the degradation of mitotic cyclins. The same antibodies suppressed M phase‐promoting factor (MPF)‐dependent activation of the APC/cyclosome in interphase egg extracts, although they did not appear to alter the pattern or extent of MPF‐dependent phosphorylation of APC/cyclosome subunits. As these phosphorylations are thought to be essential for APC/cyclosome activation in eggs and early embryos, we conclude that at least two events are required for MPF to activate the APC/cyclosome, allowing both chromatid segregation and full degradation of mitotic cyclins. The first one, which does not require FZY function, is the phosphorylation of APC/cyclosome subunits. The second one, that requires FZY function (even in the absence of MAD2 protein and when the spindle assembly checkpoint is not activated) is not yet understood at its molecular level.
The EMBO Journal | 1995
Alain Devault; Martinez Am; Didier Fesquet; Jean-Claude Labbé; Nathalie Morin; J. P. Tassan; E. A. Nigg; J. C. Cavadore; Marcel Dorée
The kinase responsible for Thr161‐Thr160 phosphorylation and activation of cdc2/cdk2 (CAK:cdk‐activating kinase) has been shown previously to comprise at least two subunits, cdk7 and cyclin H. An additional protein co‐purified with CAK in starfish oocytes, but its sequencing did not reveal any similarity with any known protein. In the present work, a cDNA encoding this protein is cloned and sequenced in both starfish and Xenopus oocytes. It is shown to encode a new member of the RING finger family of proteins with a characteristic C3HC4 motif located in the N‐terminal domain. We demonstrate that the RING finger protein (MAT1: ‘menage à trois’) is a new subunit of CAK in both vertebrate and invertebrates. However, CAK may also exist in oocytes as heterodimeric complexes between cyclin H and cdk7 only. Stable heterotrimeric CAK complexes were generated in reticulocyte lysates programmed with mRNAs encoding Xenopus cdk7, cyclin H and MAT1. In contrast, no heterodimeric cyclin H‐cdk7 complex could be immunoprecipitated from reticulocyte lysates programmed with cdk7 and cyclin H mRNAs only. Stabilization of CAK complexes by MAT1 does not involve phosphorylation of Thr176, as the Thr176–>Ala mutant of Xenopus cdk7 could engage as efficiently as wild‐type cdk7 in ternary complexes. Even though starfish MAT1 is almost identical to Xenopus MAT1 in the RING finger domain, the starfish subunit could not replace the Xenopus subunit and stabilize cyclin H‐cdk7 in reticulocyte lysate, suggesting that the MAT1 subunit does not (or not only) interact with cyclin H‐cdk7 through the RING finger domain.
The EMBO Journal | 2009
Suzanne Vigneron; Estelle Brioudes; Andrew Burgess; Jean-Claude Labbé; Thierry Lorca; Anna Castro
Greatwall (GW) is a new kinase that has an important function in the activation and the maintenance of cyclin B–Cdc2 activity. Although the mechanism by which it induces this effect is unknown, it has been suggested that GW could maintain cyclin B–Cdc2 activity by regulating its activation loop. Using Xenopus egg extracts, we show that GW depletion promotes mitotic exit, even in the presence of a high cyclin B–Cdc2 activity by inducing dephosphorylation of mitotic substrates. These results indicate that GW does not maintain the mitotic state by regulating the cyclin B–Cdc2 activation loop but by regulating a phosphatase. This phosphatase is PP2A; we show that (1) PP2A binds GW, (2) the inhibition or the specific depletion of this phosphatase from mitotic extracts rescues the phenotype induced by GW inactivation and (3) the PP2A‐dependent dephosphorylation of cyclin B–Cdc2 substrates is increased in GW‐depleted Xenopus egg extracts. These results suggest that mitotic entry and maintenance is not only mediated by the activation of cyclin B–Cdc2 but also by the regulation of PP2A by GW.
EMBO Reports | 2002
Anna Castro; Yannick Arlot-Bonnemains; Suzanne Vigneron; Jean-Claude Labbé; Claude Prigent; Thierry Lorca
Aurora‐A kinase is a mitotic spindle‐pole‐associated protein that has been implicated in duplication and separation of centrosomes and in spindle assembly. The proper timing and amplitude of Aurora‐A expression seems to be important, as elevated levels of this protein have been associated with centrosome abnormalities and aneuploidy in mammalian cells. We show that Aurora‐A increases at the G2–M transistion and disappears completely at G1 in XL2 cells. Using Xenopus oocyte extracts, we demonstrate that degradation of Aurora‐A is mediated by the anaphase‐promoting complex (APC) and is regulated by Fizzy‐Related but not by Fizzy. Degradation of Aurora‐A depends on a D‐Box, but not on its KEN‐Box motif, as mutation of its C‐terminal D‐Box sequence induces stabilization of the protein. Accordingly, addition into the extracts of a cyclin B‐type D‐Box‐motif‐containing peptide completely suppresses its degradation. Furthermore, APC/Fizzy‐Related ubiquitylates the wild type but not a D‐Box mutant form of Aurora‐A in vitro. Consistent with these data, ectopic expression of Fizzy‐Related in Xenopus oocytes induces complete degradation of endogenous Aurora‐A. Aurora‐A is thus the first protein, at least in our assay system, that undergoes a D‐Box‐dependent degradation mediated by APC/Fizzy‐Related but not by APC/Fizzy.