Jean-Claude Manuguerra
Pasteur Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jean-Claude Manuguerra.
The Lancet | 2016
Van-Mai Cao-Lormeau; Alexandre Blake; Sandrine Mons; Stéphane Lastère; Claudine Roche; Jessica Vanhomwegen; Timothée Dub; Laure Baudouin; Anita Teissier; Philippe Larre; Anne-Laure Vial; Christophe Decam; Valérie Choumet; Susan K. Halstead; Hugh J. Willison; L. Musset; Jean-Claude Manuguerra; Philippe Desprès; Emmanuel Fournier; Henri-Pierre Mallet; Didier Musso; Arnaud Fontanet; Jean Neil; Frédéric Ghawché
BACKGROUND Between October, 2013, and April, 2014, French Polynesia experienced the largest Zika virus outbreak ever described at that time. During the same period, an increase in Guillain-Barré syndrome was reported, suggesting a possible association between Zika virus and Guillain-Barré syndrome. We aimed to assess the role of Zika virus and dengue virus infection in developing Guillain-Barré syndrome. METHODS In this case-control study, cases were patients with Guillain-Barré syndrome diagnosed at the Centre Hospitalier de Polynésie Française (Papeete, Tahiti, French Polynesia) during the outbreak period. Controls were age-matched, sex-matched, and residence-matched patients who presented at the hospital with a non-febrile illness (control group 1; n=98) and age-matched patients with acute Zika virus disease and no neurological symptoms (control group 2; n=70). Virological investigations included RT-PCR for Zika virus, and both microsphere immunofluorescent and seroneutralisation assays for Zika virus and dengue virus. Anti-glycolipid reactivity was studied in patients with Guillain-Barré syndrome using both ELISA and combinatorial microarrays. FINDINGS 42 patients were diagnosed with Guillain-Barré syndrome during the study period. 41 (98%) patients with Guillain-Barré syndrome had anti-Zika virus IgM or IgG, and all (100%) had neutralising antibodies against Zika virus compared with 54 (56%) of 98 in control group 1 (p<0.0001). 39 (93%) patients with Guillain-Barré syndrome had Zika virus IgM and 37 (88%) had experienced a transient illness in a median of 6 days (IQR 4-10) before the onset of neurological symptoms, suggesting recent Zika virus infection. Patients with Guillain-Barré syndrome had electrophysiological findings compatible with acute motor axonal neuropathy (AMAN) type, and had rapid evolution of disease (median duration of the installation and plateau phases was 6 [IQR 4-9] and 4 days [3-10], respectively). 12 (29%) patients required respiratory assistance. No patients died. Anti-glycolipid antibody activity was found in 13 (31%) patients, and notably against GA1 in eight (19%) patients, by ELISA and 19 (46%) of 41 by glycoarray at admission. The typical AMAN-associated anti-ganglioside antibodies were rarely present. Past dengue virus history did not differ significantly between patients with Guillain-Barré syndrome and those in the two control groups (95%, 89%, and 83%, respectively). INTERPRETATION This is the first study providing evidence for Zika virus infection causing Guillain-Barré syndrome. Because Zika virus is spreading rapidly across the Americas, at risk countries need to prepare for adequate intensive care beds capacity to manage patients with Guillain-Barré syndrome. FUNDING Labex Integrative Biology of Emerging Infectious Diseases, EU 7th framework program PREDEMICS. and Wellcome Trust.
The Lancet | 2003
Thijs Kuiken; Ron A. M. Fouchier; Martin Schutten; Geert van Amerongen; Debby van Riel; Jon D. Laman; Ton de Jong; Gerard J. J. van Doornum; Wilina Lim; Ai Ee Ling; Paul K.S. Chan; John S. Tam; Maria Zambon; Robin Gopal; Christian Drosten; Sylvie van der Werf; Nicolas Escriou; Jean-Claude Manuguerra; Klaus Stöhr; J. S. Malik Peiris; Albert D. M. E. Osterhaus
Summary Background The worldwide outbreak of severe acute respiratory syndrome (SARS) is associated with a newly discovered coronavirus, SARS-associated coronavirus (SARSCoV). We did clinical and experimental studies to assess the role of this virus in the cause of SARS. Methods We tested clinical and postmortem samples from 436 SARS patients in six countries for infection with SARSCoV, human metapneumovirus, and other respiratory pathogens. We infected four cynomolgus macaques (Macaca fascicularis) with SARS-CoV in an attempt to replicate SARS and did necropsies on day 6 after infection. Findings SARS-CoV infection was diagnosed in 329 (75%) of 436 patients fitting the case definition of SARS; human metapneumovirus was diagnosed in 41 (12%) of 335, and other respiratory pathogens were diagnosed only sporadically. SARS-CoV was, therefore, the most likely causal agent of SARS. The four SARS-CoV-infected macaques excreted SARS-CoV from nose, mouth, and pharynx from 2 days after infection. Three of four macaques developed diffuse alveolar damage, similar to that in SARS patients, and characterised by epithelial necrosis, serosanguineous exudate, formation of hyaline membranes, type 2 pneumocyte hyperplasia, and the presence of syncytia. SARS-CoV was detected in pneumonic areas by virus isolation and RT-PCR, and was localised to alveolar epithelial cells and syncytia by immunohistochemistry and transmission electron microscopy. Interpretation Replication in SARS-CoV-infected macaques of pneumonia similar to that in human beings with SARS, combined with the high prevalence of SARS-CoV infection in SARS patients, fulfill the criteria required to prove that SARS-CoV is the primary cause of SARS. Published online July 22, 2003 http://image.thelancet.com/extras/03art6318web.pdf
The Lancet | 2013
Benoit Guery; Julien Poissy; Loubna El Mansouf; Caroline Séjourné; Nicolas Ettahar; Xavier Lemaire; Fanny Vuotto; Sylvie Behillil; Vincent Enouf; Valérie Caro; A. Mailles; Didier Che; Jean-Claude Manuguerra; Daniel Mathieu; Arnaud Fontanet; Sylvie van der Werf
Summary Background Human infection with a novel coronavirus named Middle East Respiratory Syndrome coronavirus (MERS-CoV) was first identified in Saudi Arabia and the Middle East in September, 2012, with 44 laboratory-confirmed cases as of May 23, 2013. We report detailed clinical and virological data for two related cases of MERS-CoV disease, after nosocomial transmission of the virus from one patient to another in a French hospital. Methods Patient 1 visited Dubai in April, 2013; patient 2 lives in France and did not travel abroad. Both patients had underlying immunosuppressive disorders. We tested specimens from the upper (nasopharyngeal swabs) or the lower (bronchoalveolar lavage, sputum) respiratory tract and whole blood, plasma, and serum specimens for MERS-CoV by real-time RT-PCR targeting the upE and Orf1A genes of MERS-CoV. Findings Initial clinical presentation included fever, chills, and myalgia in both patients, and for patient 1, diarrhoea. Respiratory symptoms rapidly became predominant with acute respiratory failure leading to mechanical ventilation and extracorporeal membrane oxygenation (ECMO). Both patients developed acute renal failure. MERS-CoV was detected in lower respiratory tract specimens with high viral load (eg, cycle threshold [Ct] values of 22·9 for upE and 24 for Orf1a for a bronchoalveolar lavage sample from patient 1; Ct values of 22·5 for upE and 23·9 for Orf1a for an induced sputum sample from patient 2), whereas nasopharyngeal specimens were weakly positive or inconclusive. The two patients shared the same room for 3 days. The incubation period was estimated at 9–12 days for the second case. No secondary transmission was documented in hospital staff despite the absence of specific protective measures before the diagnosis of MERS-CoV was suspected. Patient 1 died on May 28, due to refractory multiple organ failure. Interpretation Patients with respiratory symptoms returning from the Middle East or exposed to a confirmed case should be isolated and investigated for MERS-CoV with lower respiratory tract sample analysis and an assumed incubation period of 12 days. Immunosuppression should also be taken into account as a risk factor. Funding French Institute for Public Health Surveillance, ANR grant Labex Integrative Biology of Emerging Infectious Diseases, and the European Communitys Seventh Framework Programme projects EMPERIE and PREDEMICS.
PLOS ONE | 2012
Vincent Foulongne; Virginie Sauvage; Charles Hébert; Justine Cheval; Meriadeg Ar Gouilh; Kevin Pariente; Michel Segondy; Ana Maria Burguière; Jean-Claude Manuguerra; Valérie Caro; Marc Eloit
The human skin is a complex ecosystem that hosts a heterogeneous flora. Until recently, the diversity of the cutaneous microbiota was mainly investigated for bacteria through culture based assays subsequently confirmed by molecular techniques. There are now many evidences that viruses represent a significant part of the cutaneous flora as demonstrated by the asymptomatic carriage of beta and gamma-human papillomaviruses on the healthy skin. Furthermore, it has been recently suggested that some representatives of the Polyomavirus genus might share a similar feature. In the present study, the cutaneous virome of the surface of the normal-appearing skin from five healthy individuals and one patient with Merkel cell carcinoma was investigated through a high throughput metagenomic sequencing approach in an attempt to provide a thorough description of the cutaneous flora, with a particular focus on its viral component. The results emphasize the high diversity of the viral cutaneous flora with multiple polyomaviruses, papillomaviruses and circoviruses being detected on normal-appearing skin. Moreover, this approach resulted in the identification of new Papillomavirus and Circovirus genomes and confirmed a very low level of genetic diversity within human polyomavirus species. Although viruses are generally considered as pathogen agents, our findings support the existence of a complex viral flora present at the surface of healthy-appearing human skin in various individuals. The dynamics and anatomical variations of this skin virome and its variations according to pathological conditions remain to be further studied. The potential involvement of these viruses, alone or in combination, in skin proliferative disorders and oncogenesis is another crucial issue to be elucidated.
Glycoconjugate Journal | 1994
Sørge Kelm; Roland Schauer; Jean-Claude Manuguerra; Hans-Jürgen Gross; Paul R. Crocker
An increasing number of mammalian cell adhesion molecules, including sialoadhesion, CD22 and the family of selectins, have been found to bind cell surface glycoconjugates containing sialic acids. Here we describe how the structural diversity of this sugar influences cell adhesion mediated by the related molecules sialoadhesin and CD22 in murine macrophages and B-cells respectively. We show that the 9-O-acetyl group of Neu5,9Ac2 and theN-glycoloyl residue of Neu5Gc interfere with sialoadhesin binding. In contrast, CD22 binds more strongly to Neu5Gc compared to Neu5Ac. Of two synthetic sialic acids tested, only CD22 bound theN-formyl derivative, whereas aN-trifluoroacetyl residue was accepted by sialoadhesin. The potential significance for the regulation of sialic acid dependent cell adhesion phenomena is discussed.
The New England Journal of Medicine | 2014
Gaël D. Maganga; Jimmy Kapetshi; Nicolas Berthet; Benoit Kebela Ilunga; Felix Kabange; Placide Mbala Kingebeni; Vital Mondonge; Jean-Jacques Muyembe; Eric Bertherat; Sylvie Briand; Joseph Cabore; Alain Epelboin; Gary P. Kobinger; Licé González-Angulo; Jean-Claude Manuguerra; Jean-Marie Okwo-Bele; Christopher Dye; D. Phil; Eric Leroy; Abstr Act
BACKGROUND The seventh reported outbreak of Ebola virus disease (EVD) in the equatorial African country of the Democratic Republic of Congo (DRC) began on July 26, 2014, as another large EVD epidemic continued to spread in West Africa. Simultaneous reports of EVD in equatorial and West Africa raised the question of whether the two outbreaks were linked. METHODS We obtained data from patients in the DRC, using the standard World Health Organization clinical-investigation form for viral hemorrhagic fevers. Patients were classified as having suspected, probable, or confirmed EVD or a non-EVD illness. Blood samples were obtained for polymerase-chain-reaction-based diagnosis, viral isolation, sequencing, and phylogenetic analysis. RESULTS The outbreak began in Inkanamongo village in the vicinity of Boende town in Équateur province and has been confined to that province. A total of 69 suspected, probable, or confirmed cases were reported between July 26 and October 7, 2014, including 8 cases among health care workers, with 49 deaths. As of October 7, there have been approximately six generations of cases of EVD since the outbreak began. The reported weekly case incidence peaked in the weeks of August 17 and 24 and has since fallen sharply. Genome sequencing revealed Ebola virus (EBOV, Zaire species) as the cause of this outbreak. A coding-complete genome sequence of EBOV that was isolated during this outbreak showed 99.2% identity with the most closely related variant from the 1995 outbreak in Kikwit in the DRC and 96.8% identity to EBOV variants that are currently circulating in West Africa. CONCLUSIONS The current EVD outbreak in the DRC has clinical and epidemiologic characteristics that are similar to those of previous EVD outbreaks in equatorial Africa. The causal agent is a local EBOV variant, and this outbreak has a zoonotic origin different from that in the 2014 epidemic in West Africa. (Funded by the Centre International de Recherches Médicales de Franceville and others.).
Emerging Infectious Diseases | 2011
Virginie Sauvage; Vincent Foulongne; Justine Cheval; Meriadeg Ar Gouilh; Kevin Pariente; Olivier Dereure; Jean-Claude Manuguerra; Jennifer Richardson; Marc Lecuit; Ana Maria Burguiere; Valérie Caro; Marc Eloit
TOC summary: This virus is shed at the human skin surface.
Vector-borne and Zoonotic Diseases | 2014
Nicolas Berthet; Emmanuel Nakouné; Basile Kamgang; Benjamin Selekon; Stéphane Descorps-Declère; Antoine Gessain; Jean-Claude Manuguerra; Mirdad Kazanji
Zika virus (ZIKV) is an emerging pathogen belonging to the Spondweni serocomplex within the genus Flavivirus. It has been isolated from several mosquito species. Two lineages of ZIKV have been defined by polyprotein homology. Using high-throughput sequencing, we obtained and characterized three complete genomes of ZIKV isolated between 1976 and 1980 in the Central African Republic. The three viruses were isolated from two species of mosquito, Aedes africanus and Ae. opok. Two sequences from Ae. africanus had 99.9% nucleotide sequence identity and 100% amino acid identity, whereas the complete genome obtained from Ae. opok had 98.3% nucleotide identity and 99.4% amino acid identity with the other two genomes. Phylogenetic analysis based on the amino acid sequence of the polyprotein showed that the three ZIKV strains clustered together but diverged from all other ZIKV strains. Our molecular data suggest that a different subtype of West African ZIKV strains circulated in Aedes species in Central Africa.
BMC Molecular Biology | 2008
Nicolas Berthet; Anita K. Reinhardt; India Leclercq; Sven van Ooyen; Christophe Batéjat; Philip Dickinson; Iain G. Old; Katherine Kong; Laurent Dacheux; Hervé Bourhy; Giulia C. Kennedy; Christian Korfhage; Stewart T. Cole; Jean-Claude Manuguerra
BackgroundPhi29 polymerase based amplification methods provides amplified DNA with minimal changes in sequence and relative abundance for many biomedical applications. RNA virus detection using microarrays, however, can present a challenge because phi29 DNA polymerase cannot amplify RNA nor small cDNA fragments (<2000 bases) obtained by reverse transcription of certain viral RNA genomes. Therefore, ligation of cDNA fragments is necessary prior phi29 polymerase based amplification. We adapted the QuantiTect Whole Transcriptome Kit (Qiagen) to our purposes and designated the method as Whole Transcriptome Amplification (WTA).ResultsWTA successfully amplified cDNA from a panel of RNA viruses representing the diversity of ribovirus genome sizes. We amplified a range of genome copy numbers from 15 to 4 × 107 using WTA, which yielded quantities of amplified DNA as high as 1.2 μg/μl or 1010 target copies. The amplification factor varied between 109 and 106. We also demonstrated that co-amplification occurred when viral RNA was mixed with bacterial DNA.ConclusionThis is the first report in the scientific literature showing that a modified WGA (WTA) approach can be successfully applied to viral genomic RNA of all sizes. Amplifying viral RNA by WTA provides considerably better sensitivity and accuracy of detection compared to random RT-PCR.
Nature | 2015
Etienne Simon-Loriere; Ousmane Faye; Oumar Faye; Lamine Koivogui; N'Faly Magassouba; Sakoba Keita; Jean-Michel Thiberge; Laure Diancourt; Christiane Bouchier; Matthias Vandenbogaert; Valérie Caro; Gamou Fall; Jan P. Buchmann; Christan B. Matranga; Pardis C. Sabeti; Jean-Claude Manuguerra; Edward C. Holmes; Amadou A. Sall
An epidemic of Ebola virus disease of unprecedented scale has been ongoing for more than a year in West Africa. As of 29 April 2015, there have been 26,277 reported total cases (of which 14,895 have been laboratory confirmed) resulting in 10,899 deaths. The source of the outbreak was traced to the prefecture of Guéckédou in the forested region of southeastern Guinea. The virus later spread to the capital, Conakry, and to the neighbouring countries of Sierra Leone, Liberia, Nigeria, Senegal and Mali. In March 2014, when the first cases were detected in Conakry, the Institut Pasteur of Dakar, Senegal, deployed a mobile laboratory in Donka hospital to provide diagnostic services to the greater Conakry urban area and other regions of Guinea. Through this process we sampled 85 Ebola viruses (EBOV) from patients infected from July to November 2014, and report their full genome sequences here. Phylogenetic analysis reveals the sustained transmission of three distinct viral lineages co-circulating in Guinea, including the urban setting of Conakry and its surroundings. One lineage is unique to Guinea and closely related to the earliest sampled viruses of the epidemic. A second lineage contains viruses probably reintroduced from neighbouring Sierra Leone on multiple occasions, while a third lineage later spread from Guinea to Mali. Each lineage is defined by multiple mutations, including non-synonymous changes in the virion protein 35 (VP35), glycoprotein (GP) and RNA-dependent RNA polymerase (L) proteins. The viral GP is characterized by a glycosylation site modification and mutations in the mucin-like domain that could modify the outer shape of the virion. These data illustrate the ongoing ability of EBOV to develop lineage-specific and potentially phenotypically important variation.