Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jean-Claude Mollet is active.

Publication


Featured researches published by Jean-Claude Mollet.


Plant Physiology | 2010

Biochemical and Immunocytological Characterizations of Arabidopsis Pollen Tube Cell Wall

Flavien Dardelle; Arnaud Lehner; Muriel Bardor; Patrice Lerouge; Azeddine Driouich; Jean-Claude Mollet

During plant sexual reproduction, pollen germination and tube growth require development under tight spatial and temporal control for the proper delivery of the sperm cells to the ovules. Pollen tubes are fast growing tip-polarized cells able to perceive multiple guiding signals emitted by the female organ. Adhesion of pollen tubes via cell wall molecules may be part of the battery of signals. In order to study these processes, we investigated the cell wall characteristics of in vitro-grown Arabidopsis (Arabidopsis thaliana) pollen tubes using a combination of immunocytochemical and biochemical techniques. Results showed a well-defined localization of cell wall epitopes. Low esterified homogalacturonan epitopes were found mostly in the pollen tube wall back from the tip. Xyloglucan and arabinan from rhamnogalacturonan I epitopes were detected along the entire tube within the two wall layers and the outer wall layer, respectively. In contrast, highly esterified homogalacturonan and arabinogalactan protein epitopes were found associated predominantly with the tip region. Chemical analysis of the pollen tube cell wall revealed an important content of arabinosyl residues (43%) originating mostly from (1→5)-α-l-arabinan, the side chains of rhamnogalacturonan I. Finally, matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis of endo-glucanase-sensitive xyloglucan showed mass spectra with two dominant oligosaccharides (XLXG/XXLG and XXFG), both being mono O-acetylated, and accounting for over 68% of the total ion signals. These findings demonstrate that the Arabidopsis pollen tube wall has its own characteristics compared with other cell types in the Arabidopsis sporophyte. These structural features are discussed in terms of pollen tube cell wall biosynthesis and growth dynamics.


Annals of Botany | 2012

Arabinogalactan proteins in root and pollen-tube cells: distribution and functional aspects

Eric Nguema-Ona; Sílvia Coimbra; Maïté Vicré-Gibouin; Jean-Claude Mollet; Azeddine Driouich

BACKGROUND Arabinogalactan proteins (AGPs) are complex proteoglycans of the cell wall found in the entire plant kingdom and in almost all plant organs. AGPs encompass a large group of heavily glycosylated cell-wall proteins which share common features, including the presence of glycan chains especially enriched in arabinose and galactose and a protein backbone particularly rich in hydroxyproline residues. However, AGPs also exhibit strong heterogeneities among their members in various plant species. AGP ubiquity in plants suggests these proteoglycans are fundamental players for plant survival and development. SCOPE In this review, we first present an overview of current knowledge and specific features of AGPs. A section devoted to major tools used to study AGPs is also presented. We then discuss the distribution of AGPs as well as various aspects of their functional properties in root tissues and pollen tubes. This review also suggests novel directions of research on the role of AGPs in the biology of roots and pollen tubes.


Plant Physiology | 1997

Extracellular Matrix Assembly in Diatoms (Bacillariophyceae) (II. 2,6-Dichlorobenzonitrile Inhibition of Motility and Stalk Production in the Marine Diatom Achnanthes longipes).

Yan Wang; Jingjie Lu; Jean-Claude Mollet; Michael R. Gretz; Kyle D. Hoagland

The cellulose synthesis inhibitor 2,6-dichlorobenzonitrile (DCB) and the DCB analogs 2-chloro-6-fluorobenzonitrile, 3-amino-2,6-dichlorobenzonitrile, and 5-dimethylamino-naphthalene-1-sulfonyl-(3-cyano-2, 4-dichloro)aniline (DCBF) inhibited extracellular adhesive production in the marine diatom Achnanthes longipes, resulting in a loss of motility and a lack of permanent adhesion. The effect was fully reversible upon removal of the inhibitor, and cell growth was not affected at concentrations of inhibitors adequate to effectively interrupt the adhesion sequence. Video microscopy revealed that the adhesion sequence was mediated by the export and assembly of polymers, and consisted of initial attachment followed by cell motility and eventual production of permanent adhesive structures in the form of stalks that elevated the diatom above the substratum. A. longipes adhesive polymers are primarily composed of noncellulosic polysaccharides (B.A. Wustman, M.R. Gretz, and K.D. Hoagland [1997] Plant Physiol 113: 1059–1069). These results, together with the discovery of DCB inhibition of extracellular matrix assembly in noncellulosic red algal unicells (S.M. Arad, O. Dubinsky, and B. Simon [1994] Phycologia 33: 158–162), indicate that DCB inhibits synthesis of noncellulosic extracellular polysaccharides. A fluorescent probe, DCBF, was synthesized and shown to inhibit adhesive polymer production in the same manner as DCB. DCBF specifically labeled an 18-kD polypeptide isolated from a membrane fraction. Inhibition of adhesion by DCB and its analogs provides evidence of a direct relationship between polysaccharide synthesis and motility and permanent adhesion.


Plants (Basel, Switzerland) | 2013

Cell Wall Composition, Biosynthesis and Remodeling during Pollen Tube Growth

Jean-Claude Mollet; Christelle Leroux; Flavien Dardelle; Arnaud Lehner

The pollen tube is a fast tip-growing cell carrying the two sperm cells to the ovule allowing the double fertilization process and seed setting. To succeed in this process, the spatial and temporal controls of pollen tube growth within the female organ are critical. It requires a massive cell wall deposition to promote fast pollen tube elongation and a tight control of the cell wall remodeling to modify the mechanical properties. In addition, during its journey, the pollen tube interacts with the pistil, which plays key roles in pollen tube nutrition, guidance and in the rejection of the self-incompatible pollen. This review focuses on our current knowledge in the biochemistry and localization of the main cell wall polymers including pectin, hemicellulose, cellulose and callose from several pollen tube species. Moreover, based on transcriptomic data and functional genomic studies, the possible enzymes involved in the cell wall remodeling during pollen tube growth and their impact on the cell wall mechanics are also described. Finally, mutant analyses have permitted to gain insight in the function of several genes involved in the pollen tube cell wall biosynthesis and their roles in pollen tube growth are further discussed.


Journal of Biological Chemistry | 2007

Two SCA (Stigma/Style Cysteine-rich Adhesin) Isoforms Show Structural Differences That Correlate with Their Levels of in Vitro Pollen Tube Adhesion Activity

Keun Chae; Kangling Zhang; Li Zhang; Dimitrios Morikis; Sun Tae Kim; Jean-Claude Mollet; Noelle de la Rosa; Kimberly Tan; Elizabeth M. Lord

Lily pollen tubes grow adhering to an extracellular matrix produced by the transmitting tract epidermis in a hollow style. SCA, a small (∼9.4 kDa), basic protein plus low esterified pectin from this extracellular matrix are involved in the pollen tube adhesion event. The mode of action for this adhesion event is unknown. We partially separated three SCA isoforms from the lily stigma in serial size exclusion column fractions (SCA1, 9370 Da; SCA2, 9384 Da; SCA3, 9484 Da). Peptide sequencing analysis allowed us to determine two amino acid variations in SCA3, compared with SCA1. For SCA2, however, there are more sequence variations yet to be identified. Our structural homology and molecular dynamics modeling results show that SCA isoforms have the plant nonspecific lipid transfer protein-like structure: a globular shape of the orthogonal 4-helix bundle architecture, four disulfide bonds, an internal hydrophobic and solvent-inaccessible cavity, and a long C-terminal tail. The Ala71 in SCA3, replacing the Gly71 in SCA1, has no predictable effect on structure. The Arg26 in SCA3, replacing the Gly26 in SCA1, is predicted to cause structural changes that result in a significantly reduced volume for the internal hydrophobic cavity in SCA3. The volume of the internal cavity fluctuates slightly during the molecular dynamics simulation, but overall, SCA1 displays a larger cavity than SCA3. SCA1 displays higher activity than SCA3 in the in vitro pollen tube adhesion assay. No differences were found between the two SCAs in a binding assay with pectin. The larger size of the hydrophobic cavity in SCA1 correlates with its higher adhesion activity.


Mikrochimica Acta | 1993

Direct structural identification of polysaccharides from red algae by FTIR microspectrometry I: Localization of agar inGracilaria verrucosa sections

Majda Sekkal; Jean-Pierre Huvenne; Pierre Legrand; Bernard Sombret; Jean-Claude Mollet; Anne Mouradi-Givernaud; Marie-Claire Verdus

Unlike carrageenans, agars have not been studied very extensively by infrared spectroscopy, in so far as the structures of this kind of polygalactanes are not as well defined as carrageenans. However, in a previous work we have carried out a vibrational analysis of both carrageenans and agars and some important assignments of the main absorptions have been made. Consequently, the present work has been undertaken in order to identify agars without any extraction directly in various seaweeds using the infrared microspectrometry method. The main advantage of this method is that the sample consists only of a dehydrated algal section. The red algaeGradlaria verrucosa has been the subject of the present study. In the first place, spectra of extracted agars were recorded, as they can help us to confirm the nature of the compound identified by this technique. In a second stage, spectra of different parts of the sections have been carried out. The comparison between the resulting spectra with those of the extracted polysaccharides, has demonstrated, firstly that the best results are obtained from the cortical area, because, as expected, the agar is mainly located in the cell wall of this area of the algae. Indeed, the feature bands of agars are all observed, especially the intense ones between 1000 and 1100 cm−1 and the more characteristic absorptions in the wavenumbers range below 1000 cm−1 so as the ones at 988, 965, 930, 890, 870, 771 and 741 cm−1. Secondly, it may be also identified in smaller amounts in the medullar area, the cells are greater than in the cortical area and the cytoplasm is preponderent. However, in the latter case a coexisting polysaccharide, present in a considerable quantity and called floridean starch (Its structure is not very well known, as it varies from one algae to another), masks the spectra of agar, as its spectrum is very similar to those of polygalactanes.


Annals of Botany | 2014

The cell wall pectic polymer rhamnogalacturonan-II is required for proper pollen tube elongation: implications of a putative sialyltransferase-like protein.

Marie Dumont; Arnaud Lehner; Sophie Bouton; Marie Christine Kiefer-Meyer; Aline Voxeur; Jérôme Pelloux; Patrice Lerouge; Jean-Claude Mollet

BACKGROUND AND AIMS Rhamnogalacturonan-II (RG-II) is one of the pectin motifs found in the cell wall of all land plants. It contains sugars such as 2-keto-3-deoxy-d-lyxo-heptulosaric acid (Dha) and 2-keto-3-deoxy-d-manno-octulosonic acid (Kdo), and within the wall RG-II is mostly found as a dimer via a borate diester cross-link. To date, little is known regarding the biosynthesis of this motif. Here, after a brief review of our current knowledge on RG-II structure, biosynthesis and function in plants, this study explores the implications of the presence of a Golgi-localized sialyltransferase-like 2 (SIA2) protein that is possibly involved in the transfer of Dha or Kdo in the RG-II of Arabidopsis thaliana pollen tubes, a fast-growing cell type used as a model for the study of cell elongation. METHODS Two heterozygous mutant lines of arabidopsis (sia2-1+/- and qrt1 × sia2-2+/-) were investigated. sia2-2+/- was in a quartet1 background and the inserted T-DNA contained the reporter gene β-glucuronidase (GUS) under the pollen-specific promoter LAT52. Pollen germination and pollen tube phenotype and growth were analysed both in vitro and in vivo by microscopy. KEY RESULTS Self-pollination of heterozygous lines produced no homozygous plants in the progeny, which may suggest that the mutation could be lethal. Heterozygous mutants displayed a much lower germination rate overall and exhibited a substantial delay in germination (20 h of delay to reach 30 % of pollen grain germination compared with the wild type). In both lines, mutant pollen grains that were able to produce a tube had tubes that were either bursting, abnormal (swollen or dichotomous branching tip) or much shorter compared with wild-type pollen tubes. In vivo, mutant pollen tubes were restricted to the style, whereas the wild-type pollen tubes were detected at the base of the ovary. CONCLUSIONS This study highlights that the mutation in arabidopsis SIA2 encoding a sialyltransferase-like protein that may transfer Dha or Kdo on the RG-II motif has a dramatic effect on the stability of the pollen tube cell wall.


Plant Physiology | 2015

PECTIN METHYLESTERASE48 is involved in Arabidopsis pollen grain germination

Christelle Leroux; Sophie Bouton; Marie-Christine Kiefer-Meyer; Tohnyui Ndinyanka Fabrice; Alain Mareck; Stéphanie Guénin; Françoise Fournet; Christoph Ringli; Jérôme Pelloux; Azeddine Driouich; Patrice Lerouge; Arnaud Lehner; Jean-Claude Mollet

Modifying homogalacturonans in the intine cell wall during maturation of the pollen grain is central for proper germination. Germination of pollen grains is a crucial step in plant reproduction. However, the molecular mechanisms involved remain unclear. We investigated the role of PECTIN METHYLESTERASE48 (PME48), an enzyme implicated in the remodeling of pectins in Arabidopsis (Arabidopsis thaliana) pollen. A combination of functional genomics, gene expression, in vivo and in vitro pollen germination, immunolabeling, and biochemical analyses was used on wild-type and Atpme48 mutant plants. We showed that AtPME48 is specifically expressed in the male gametophyte and is the second most expressed PME in dry and imbibed pollen grains. Pollen grains from homozygous mutant lines displayed a significant delay in imbibition and germination in vitro and in vivo. Moreover, numerous pollen grains showed two tips emerging instead of one in the wild type. Immunolabeling and Fourier transform infrared analyses showed that the degree of methylesterification of the homogalacturonan was higher in pme48−/− pollen grains. In contrast, the PME activity was lower in pme48−/−, partly due to a reduction of PME48 activity revealed by zymogram. Interestingly, the wild-type phenotype was restored in pme48−/− with the optimum germination medium supplemented with 2.5 mm calcium chloride, suggesting that in the wild-type pollen, the weakly methylesterified homogalacturonan is a source of Ca2+ necessary for pollen germination. Although pollen-specific PMEs are traditionally associated with pollen tube elongation, this study provides strong evidence that PME48 impacts the mechanical properties of the intine wall during maturation of the pollen grain, which, in turn, influences pollen grain germination.


Plant Journal | 2016

Plant cell wall imaging by metabolic click‐mediated labelling of rhamnogalacturonan II using azido 3‐deoxy‐d‐manno‐oct‐2‐ulosonic acid

Marie Dumont; Arnaud Lehner; Boris Vauzeilles; Julien Malassis; Alan Marchant; Kevin M. Smyth; Bruno Linclau; Aurélie Baron; Jordi Mas Pons; Charles T. Anderson; Damien Schapman; Ludovic Galas; Jean-Claude Mollet; Patrice Lerouge

In plants, 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) is a monosaccharide that is only found in the cell wall pectin, rhamnogalacturonan-II (RG-II). Incubation of 4-day-old light-grown Arabidopsis seedlings or tobacco BY-2 cells with 8-azido 8-deoxy Kdo (Kdo-N3 ) followed by coupling to an alkyne-containing fluorescent probe resulted in the specific in muro labelling of RG-II through a copper-catalysed azide-alkyne cycloaddition reaction. CMP-Kdo synthetase inhibition and competition assays showing that Kdo and D-Ara, a precursor of Kdo, but not L-Ara, inhibit incorporation of Kdo-N3 demonstrated that incorporation of Kdo-N3 occurs in RG-II through the endogenous biosynthetic machinery of the cell. Co-localisation of Kdo-N3 labelling with the cellulose-binding dye calcofluor white demonstrated that RG-II exists throughout the primary cell wall. Additionally, after incubating plants with Kdo-N3 and an alkynated derivative of L-fucose that incorporates into rhamnogalacturonan I, co-localised fluorescence was observed in the cell wall in the elongation zone of the root. Finally, pulse labelling experiments demonstrated that metabolic click-mediated labelling with Kdo-N3 provides an efficient method to study the synthesis and redistribution of RG-II during root growth.


Plant Signaling & Behavior | 2010

Pectins in the cell wall of Arabidopsis thaliana pollen tube and pistil

Arnaud Lehner; Flavien Dardelle; Odile Soret-Morvan; Patrice Lerouge; Azeddine Driouich; Jean-Claude Mollet

Plant sexual reproduction involves the growth of tip-polarized pollen tubes through the female tissues in order to deliver the sperm nuclei to the egg cells. Despite the importance of this crucial step, little is known about the molecular mechanisms involved in this spatial and temporal control of the tube growth. In order to study this process and to characterize the structural composition of the extracellular matrix of the male gametophyte, immunocytochemical and biochemical analyses of Arabidopsis pollen tube wall have been carried out. Results showed a well defined localization of cell wall epitopes with highly esterified homogalacturonan and arabinogalactan-protein mainly in the tip region, weakly methylesterified homogalacturonan back from the tip and xyloglucan and (1→5)-α-L-arabinan all along the tube. Here, we present complementary data regarding 1) the ultrastructure of the pollen tube cell wall and 2) the immunolocalization of homogalacturonan and arabinan epitopes in 16h-old pollen tubes and in the stigma and the transmitting tract of the female organ. Discussion regarding the pattern of the distribution of the cell wall epitopes and the possible mechanisms of cell adhesion between the pollen tubes and the female tissues is provided.

Collaboration


Dive into the Jean-Claude Mollet's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jérôme Pelloux

University of Picardie Jules Verne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernard Sombret

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge