Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jean-Claude Sirard is active.

Publication


Featured researches published by Jean-Claude Sirard.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Flagellin stimulation of intestinal epithelial cells triggers CCL20-mediated migration of dendritic cells

Frédéric Sierro; Bertrand Dubois; Alix de La Coste; Dominique Kaiserlian; Jean-Pierre Kraehenbuhl; Jean-Claude Sirard

Enteropathogenic bacteria elicit mucosal innate and adaptive immune responses. We investigated whether gut epithelial cells played a role in triggering an adaptive immune response by recruiting dendritic cells (DCs). Immature DCs are selectively attracted by the CCL20 chemokine. The expression of the CCL20 gene in human intestinal epithelial cell lines was up-regulated by pathogenic bacteria, including Salmonella species, but not by indigenous bacteria of the intestinal flora. The Salmonella machinery for epithelial cell invasion was not required for CCL20 gene activation. Flagellin but not the lipopolysaccharide was found to be the Salmonella factor responsible for stimulation of epithelial CCL20 production. CCL20 in turn triggered a specific migration of immature DCs. Our data show that crosstalk between bacterial flagellin and epithelial cells is essential for the recruitment of DCs, a mechanism that could be instrumental to initiate adaptive immune responses in the gut.


Journal of Immunology | 2004

Flagellin Promotes Myeloid Differentiation Factor 88-Dependent Development of Th2-Type Response

Arnaud Didierlaurent; Isabel Ferrero; Luc A. Otten; Bertrand Dubois; Monique Reinhardt; Harald Carlsen; Rune Blomhoff; Shikuo Akira; Jean-Pierre Kraehenbuhl; Jean-Claude Sirard

Activation of dendritic cells (DC) by microbial products via Toll-like receptors (TLR) is instrumental in the induction of immunity. In particular, TLR signaling plays a major role in the instruction of Th1 responses. The development of Th2 responses has been proposed to be independent of the adapter molecule myeloid differentiation factor 88 (MyD88) involved in signal transduction by TLRs. In this study we show that flagellin, the bacterial stimulus for TLR5, drives MyD88-dependent Th2-type immunity in mice. Flagellin promotes the secretion of IL-4 and IL-13 by Ag-specific CD4+ T cells as well as IgG1 responses. The Th2-biased responses are associated with the maturation of DCs, which are shown to express TLR5. Flagellin-mediated DC activation requires MyD88 and induces NF-κB-dependent transcription and the production of low levels of proinflammatory cytokines. In addition, the flagellin-specific response is characterized by the lack of secretion of the Th1-promoting cytokine IL-12 p70. In conclusion, this study suggests that flagellin and, more generally, TLR ligands can control Th2 responses in a MyD88-dependent manner.


PLOS ONE | 2007

A Key Role of Dendritic Cells in Probiotic Functionality

Benoît Foligné; Georgia Zoumpopoulou; Joëlle Dewulf; Amena Ben Younes; Fabrice Chareyre; Jean-Claude Sirard; Bruno Pot; Corinne Grangette

Background Disruption of the intestinal homeostasis and tolerance towards the resident microbiota is a major mechanism involved in the development of inflammatory bowel disease. While some bacteria are inducers of disease, others, known as probiotics, are able to reduce inflammation. Because dendritic cells (DCs) play a central role in regulating immune responses and in inducing tolerance, we investigated their role in the anti-inflammatory potential of probiotic lactic acid bacteria. Methodology/Principal Findings Selected LAB strains, while efficiently taken up by DCs in vitro, induced a partial maturation of the cells. Transfer of probiotic-treated DCs conferred protection against 2, 4, 6-trinitrobenzenesulfonic acid (TNBS)-induced colitis. Protection was associated with a reduction of inflammatory scores and colonic expression of pro-inflammatory genes, while a high local expression of the immunoregulatory enzyme indolamine 2, 3 dioxgenase (IDO) was observed. The preventive effect of probiotic-pulsed DCs required not only MyD88-, TLR2- and NOD2-dependent signaling but also the induction of CD4+ CD25+ regulatory cells in an IL-10-independent pathway. Conclusions/Significance Altogether, these results suggest that selected probiotics can stimulate DC regulatory functions by targeting specific pattern-recognition receptors and pathways. The results not only emphasize the role of DCs in probiotic immune interactions, but indicate a possible role in immune-intervention therapy for IBD.


PLOS Pathogens | 2010

The Microbiota Mediates Pathogen Clearance from the Gut Lumen after Non-Typhoidal Salmonella Diarrhea

Kathrin Endt; Bärbel Stecher; Samuel Chaffron; Emma Slack; Nicolas Tchitchek; Arndt Benecke; Laurye Van Maele; Jean-Claude Sirard; Andreas J. Mueller; Mathias Heikenwalder; Andrew J. Macpherson; Richard A. Strugnell; Christian von Mering; Wolf-Dietrich Hardt

Many enteropathogenic bacteria target the mammalian gut. The mechanisms protecting the host from infection are poorly understood. We have studied the protective functions of secretory antibodies (sIgA) and the microbiota, using a mouse model for S. typhimurium diarrhea. This pathogen is a common cause of diarrhea in humans world-wide. S. typhimurium (S. tm att, sseD) causes a self-limiting gut infection in streptomycin-treated mice. After 40 days, all animals had overcome the disease, developed a sIgA response, and most had cleared the pathogen from the gut lumen. sIgA limited pathogen access to the mucosal surface and protected from gut inflammation in challenge infections. This protection was O-antigen specific, as demonstrated with pathogens lacking the S. typhimurium O-antigen (wbaP, S. enteritidis) and sIgA-deficient mice (TCRβ−/−δ−/−, JH −/−, IgA−/−, pIgR−/−). Surprisingly, sIgA-deficiency did not affect the kinetics of pathogen clearance from the gut lumen. Instead, this was mediated by the microbiota. This was confirmed using ‘L-mice’ which harbor a low complexity gut flora, lack colonization resistance and develop a normal sIgA response, but fail to clear S. tm att from the gut lumen. In these mice, pathogen clearance was achieved by transferring a normal complex microbiota. Thus, besides colonization resistance ( = pathogen blockage by an intact microbiota), the microbiota mediates a second, novel protective function, i.e. pathogen clearance. Here, the normal microbiota re-grows from a state of depletion and disturbed composition and gradually clears even very high pathogen loads from the gut lumen, a site inaccessible to most “classical” immune effector mechanisms. In conclusion, sIgA and microbiota serve complementary protective functions. The microbiota confers colonization resistance and mediates pathogen clearance in primary infections, while sIgA protects from disease if the host re-encounters the same pathogen. This has implications for curing S. typhimurium diarrhea and for preventing transmission.


European Journal of Immunology | 2003

Role of Toll‐like receptors in costimulating cytotoxic T cell responses

Katrin Schwarz; Tazio Storni; Vania Manolova; Arnaud Didierlaurent; Jean-Claude Sirard; Peter Röthlisberger; Martin F. Bachmann

Stimulation of Toll‐like receptors (TLR) by pathogen‐derived compounds leads to activation of APC, facilitating the induction of protective immunity. This phenomenon is the basis of most adjuvant formulations currently in development. Here, we tested the ability of TLR2, 3, 4, 5, 7 and 9 signaling to enhance CTL responses upon vaccination with virus‐like particles. Stimulation of TLR2 and 4 failed to increase CTL responses, whereas ligands for TLR3, 5 and 7 exhibited moderate adjuvant function. In contrast, stimulation of TLR9 dramatically increased CTL responses, indicating that ligands for TLR9 are likely to be the most promising candidates for the development of novel adjuvant formulations for stimulating CTL responses.


Infection and Immunity | 2000

Role of Toxin Functional Domains in Anthrax Pathogenesis

Fabien Brossier; Martine Weber-Levy; Michèle Mock; Jean-Claude Sirard

ABSTRACT We investigated the role of the functional domains of anthrax toxins during infection. Three proteins produced by Bacillus anthracis, the protective antigen (PA), the lethal factor (LF), and the edema factor (EF), combine in pairs to produce the lethal (PA+LF) and edema (PA+EF) toxins. A genetic strategy was developed to introduce by allelic exchange specific point mutations or in-frame deletions into B. anthracis toxin genes, thereby impairing either LF metalloprotease or EF adenylate cyclase activity or PA functional domains. In vivo effects of toxin mutations were analyzed in an experimental infection of mice. A tight correlation was observed between the properties of anthrax toxins delivered in vivo and their in vitro activities. The synergic effects of the lethal and edema toxins resulted purely from their enzymatic activities, suggesting that in vivo these toxins may act together. The PA-dependent antibody response to LF induced by immunization with live B. anthracis was used to follow the in vivo interaction of LF and PA. We found that the binding of LF to PA in vivo was necessary and sufficient for a strong antibody response against LF, whereas neither LF activity nor binding of lethal toxin complex to the cell surface was required. Mutant PA proteins were cleaved in mice sera. Thus, our data provide evidence that, during anthrax infection, PA may interact with LF before binding to the cell receptor. Immunoprotection studies indicated that the strain producing detoxified LF and EF, isogenic to the current live vaccine Sterne strain, is a safe candidate for use as a vaccine against anthrax.


Molecular Microbiology | 1999

Identification and characterization of a germination operon on the virulence plasmid pXOl of Bacillus anthracis

Chantal Guidi-Rontani; Yannick Pereira; Stephanie Ruffie; Jean-Claude Sirard; Martine Weber-Levy; Michèle Mock

The spores of Bacillus anthracis, the agent of anthrax disease, germinate within professional phagocytes, such as murine macrophage‐like RAW264.7 cells and alveolar macrophages. We identified a cluster of germination genes extending for 3608 nucleotides between the pag and atxA genes on the B. anthracis virulence plasmid pXOl. The three predicted proteins (40, 55 and 37 kDa in size) have significant sequence similarities to B. subtilis, B. cereus and B. megaterium germination proteins. Northern blot analysis of total RNA from sporulating cells indicated that the gerX locus was organized as a tricistronic operon (gerXB, gerXA and gerXC). Primer extension analysis identified a major potential transcriptional start site 31 bp upstream from the translation initiation codon of gerXB. Expression of the gerX operon was studied using a gerXB–lacZ transcriptional fusion. Expression began 2.5–3 h after the initiation of sporulation and was detected exclusively in the forespore compartment. A gerX null mutant was constructed. It was less virulent than the parental strain and did not germinate efficiently in vivo or in vitro within phagocytic cells. These data strongly suggest that gerX‐encoded proteins are involved in the virulence of B. anthracis.


Journal of Immunology | 2010

TLR5 signaling stimulates the innate production of IL-17 and IL-22 by CD3(neg)CD127+ immune cells in spleen and mucosa.

Laurye Van Maele; Christophe Carnoy; Delphine Cayet; Pascal Songhet; Laure Dumoutier; Isabel Ferrero; Laure Janot; François Erard; Julie Bertout; Hélène Léger; Florent Sebbane; Arndt Benecke; Jean-Christophe Renauld; Wolf-Dietrich Hardt; Bernhard Ryffel; Jean-Claude Sirard

In adaptive immunity, Th17 lymphocytes produce the IL-17 and IL-22 cytokines that stimulate mucosal antimicrobial defenses and tissue repair. In this study, we observed that the TLR5 agonist flagellin induced swift and transient transcription of genes encoding IL-17 and IL-22 in lymphoid, gut, and lung tissues. This innate response also temporarily enhanced the expression of genes associated with the antimicrobial Th17 signature. The source of the Th17-related cytokines was identified as novel populations of CD3negCD127+ immune cells among which CD4-expressing cells resembling lymphoid tissue inducer cells. We also demonstrated that dendritic cells are essential for expression of Th17-related cytokines and so for stimulation of innate cells. These data define that TLR-induced activation of CD3negCD127+ cells and production of Th17-related cytokines may be crucial for the early defenses against pathogen invasion of host tissues.


Journal of Immunology | 2008

Deletion of Flagellin’s Hypervariable Region Abrogates Antibody-Mediated Neutralization and Systemic Activation of TLR5-Dependent Immunity

Clément Nempont; Delphine Cayet; Martin Rumbo; Coralie Bompard; Vincent Villeret; Jean-Claude Sirard

TLRs trigger immunity by detecting microbe-associated molecular patterns (MAMPs). Flagellin is a unique MAMP because it harbors 1) an antigenic hypervariable region and 2) a conserved domain involved in TLR5-dependent systemic and mucosal proinflammatory and adjuvant activities. In this study, the contribution of the flagellin domains in TLR5 activation was investigated. We showed that TLR5 signaling can be neutralized in vivo by flagellin-specific Abs, which target the conserved domain. However, deletions of flagellin’s hypervariable region abrogated the protein’s intrinsic ability to trigger the production of neutralizing Abs. The fact that MAMP-specific Abs block TLR-mediated responses shows that this type of neutralization is a novel mechanism for down-regulating innate immunity. The stimulation of mucosal innate immunity and adjuvancy to foreign Ag was not altered by the hypervariable domain deletions. In contrast, this domain is essential to trigger systemic innate immunity, suggesting that there are distinct mechanisms for TLR5 activation in systemic and mucosal compartments. In summary, specific MAMP determinants control the production of neutralizing Abs and the compartmentalization of innate responses.


Infection and Immunity | 2010

Mucosal Administration of Flagellin Protects Mice from Streptococcus pneumoniae Lung Infection

Natalia Muñoz; Laurye Van Maele; Juan M. Marqués; Analía Rial; Jean-Claude Sirard; José A. Chabalgoity

ABSTRACT Streptococcus pneumoniae is a major cause of pneumonia in infants and the elderly. Innate defenses are essential to the control of pneumococcal infections, and deficient responses can trigger disease in susceptible individuals. Here we showed that flagellin can locally activate innate immunity and thereby increase the resistance to acute pneumonia. Flagellin mucosal treatment improved S. pneumoniae clearance in the lungs and promoted increased survival of infection. In addition, lung architecture was fully restored after the treatment of infected mice, indicating that flagellin allows the reestablishment of steady-state conditions. Using a flagellin mutant that is unable to signal through Toll-like receptor 5 (TLR5), we established that TLR5 signaling is essential for protection. In the respiratory tract, flagellin induced neutrophil infiltration into airways and upregulated the expression of genes coding for interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), CXCL1, CXCL2, and CCL20. Using depleting antibodies, we demonstrated that neutrophils are major effectors of protection. Further, we found that B- and T-cell-deficient SCID mice clear S. pneumoniae challenge to the same extent as immunocompetent animals, suggesting that these cell populations are not required for flagellin-induced protection. In conclusion, this study emphasizes that mucosal stimulation of innate immunity by a TLR not naturally engaged by S. pneumoniae can increase the potential to cure pneumococcal pneumonia.

Collaboration


Dive into the Jean-Claude Sirard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arndt Benecke

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Delphine Cayet

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar

Jean-Christophe Renauld

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wolf-Dietrich Hardt

French Institute of Health and Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge