Jean-François Allemand
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jean-François Allemand.
Science | 1996
T. R. Strick; Jean-François Allemand; David Bensimon; Aaron Bensimon; Vincent Croquette
Single linear DNA molecules were bound at multiple sites at one extremity to a treated glass cover slip and at the other to a magnetic bead. The DNA was therefore torsionally constrained. A magnetic field was used to rotate the beads and thus to coil and pull the DNA. The stretching force was determined by analysis of the Brownian fluctuations of the bead. Here, the elastic behavior of individual λ DNA molecules over- and underwound by up to 500 turns was studied. A sharp transition was discovered from a low to a high extension state at a force of ∼0.45 piconewtons for underwound molecules and at a force of ∼3 piconewtons for overwound ones. These transitions, probably reflecting the formation of alternative structures in stretched coiled DNA molecules, might be relevant for DNA transcription and replication.
Biophysical Journal | 1999
C. Bouchiat; Michelle D. Wang; Jean-François Allemand; Terence R. Strick; Steven M. Block; Vincent Croquette
We describe a simple computation of the worm-like chain model and obtain the corresponding force-versus-extension curve. We propose an improvement to the Marko and Siggia interpolation formula of Bustamante et al (Science 1994, 265:1599-1600) that is useful for fitting experimental data. We apply it to the experimental elasticity curve of single DNA molecules. Finally, we present a tool to study the agreement between the worm-like chain model and experiments.
Biophysical Journal | 1998
Terence R. Strick; Jean-François Allemand; David Bensimon; Vincent Croquette
We study DNA supercoiling in a quantitative fashion by micromanipulating single linear DNA molecules with a magnetic field gradient. By anchoring one end of the DNA to multiple sites on a magnetic bead and the other end to multiple sites on a glass surface, we were able to exert torsional control on the DNA. A rotating magnetic field was used to induce rotation of the magnetic bead, and reversibly over- and underwind the molecule. The magnetic field was also used to increase or decrease the stretching force exerted by the magnetic bead on the DNA. The molecules degree of supercoiling could therefore be quantitatively controlled and monitored, and tethered-particle motion analysis allowed us to measure the stretching force acting on the DNA. Experimental results indicate that this is a very powerful technique for measuring forces at the picoscale. We studied the effect of stretching forces ranging from 0.01 pN to 100 pN on supercoiled DNA (-0.1 < sigma < 0.2) in a variety of ionic conditions. Other effects, such as stretching-relaxing hysteresis and the braiding of two DNA molecules, are discussed.
Progress in Biophysics & Molecular Biology | 2000
Terence R. Strick; Jean-François Allemand; Vincent Croquette; David Bensimon
The elastic properties of DNA are essential for its biological function. They control its bending and twisting as well as the induction of structural modifications in the molecule. These can affect its interaction with the cell machinery. The response of a single DNA molecule to a mechanical stress can be precisely determined in single-molecule experiments which give access to an accurate measurement of the elastic parameters of DNA.
Biophysical Journal | 1997
Jean-François Allemand; David Bensimon; L. Jullien; Aaron Bensimon; Vincent Croquette
Recent developments in the rapid sequencing, mapping, and analysis of DNA rely on the specific binding of DNA to specially treated surfaces. We show here that specific binding of DNA via its unmodified extremities can be achieved on a great variety of surfaces by a judicious choice of the pH. On hydrophobic surfaces the best binding efficiency is reached at a pH of approximately 5.5. At that pH a approximately 40-kbp DNA is 10 times more likely to bind by an extremity than by a midsegment. A model is proposed to account for the differential adsorption of the molecule extremities and midsection as a function of pH. The pH-dependent specific binding can be used to align anchored DNA molecules by a receding meniscus, a process called molecular combing. The resulting properties of the combed molecules will be discussed.
Reports on Progress in Physics | 2003
Terence R. Strick; M. N. Dessinges; Gilles Charvin; N.H Dekker; Jean-François Allemand; David Bensimon; Vincent Croquette
In this paper we review the biophysics revealed by stretching single biopolymers. During the last decade various techniques have emerged allowing micromanipulation of single molecules and simultaneous measurements of their elasticity. Using such techniques, it has been possible to investigate some of the interactions playing a role in biology. We shall first review the simplest case of a non-interacting polymer and then present the structural transitions in DNA, RNA and proteins that have been studied by single-molecule techniques. We shall explain how these techniques permit a new approach to the protein folding/unfolding transition.
The EMBO Journal | 2005
Sarah Bigot; Omar A. Saleh; Christian Lesterlin; Carine Pages; Meriem El Karoui; Cynthia Dennis; Mikhail Grigoriev; Jean-François Allemand; François-Xavier Barre; François Cornet
Bacterial chromosomes are organized in replichores of opposite sequence polarity. This conserved feature suggests a role in chromosome dynamics. Indeed, sequence polarity controls resolution of chromosome dimers in Escherichia coli. Chromosome dimers form by homologous recombination between sister chromosomes. They are resolved by the combined action of two tyrosine recombinases, XerC and XerD, acting at a specific chromosomal site, dif, and a DNA translocase, FtsK, which is anchored at the division septum and sorts chromosomal DNA to daughter cells. Evidences suggest that DNA motifs oriented from the replication origin towards dif provide FtsK with the necessary information to faithfully distribute chromosomal DNA to either side of the septum, thereby bringing the dif sites together at the end of this process. However, the nature of the DNA motifs acting as FtsK orienting polar sequences (KOPS) was unknown. Using genetics, bioinformatics and biochemistry, we have identified a family of DNA motifs in the E. coli chromosome with KOPS activity.
The EMBO Journal | 2004
Omar A. Saleh; Corine Pérals; François-Xavier Barre; Jean-François Allemand
Escherichia coli FtsK is an essential cell division protein, which is thought to pump chromosomal DNA through the closing septum in an oriented manner by following DNA sequence polarity. Here, we perform single‐molecule measurements of translocation by FtsK50C, a derivative that functions as a DNA translocase in vitro. FtsK50C translocation follows Michaelis–Menten kinetics, with a maximum speed of ∼6.7 kbp/s. We present results on the effect of applied force on the speed, distance translocated, and the mean times during and between protein activity. Surprisingly, we observe that FtsK50C can spontaneously reverse its translocation direction on a fragment of E. coli chromosomal DNA, indicating that DNA sequence is not the sole determinant of translocation direction. We conclude that in vivo polarization of FtsK translocation could require the presence of cofactors; alternatively, we propose a model in which tension in the DNA directs FtsK translocation.
Nature Structural & Molecular Biology | 2006
Aurélien Bancaud; Natalia Conde e Silva; Maria Barbi; Gaudeline Wagner; Jean-François Allemand; Julien Mozziconacci; Christophe Lavelle; Vincent Croquette; Jean-Marc Victor; Ariel Prunell; Jean-Louis Viovy
Magnetic tweezers were used to study the mechanical response under torsion of single nucleosome arrays reconstituted on tandem repeats of 5S positioning sequences. Regular arrays are extremely resilient and can reversibly accommodate a large amount of supercoiling without much change in length. This behavior is quantitatively described by a molecular model of the chromatin three-dimensional architecture. In this model, we assume the existence of a dynamic equilibrium between three conformations of the nucleosome, corresponding to different crossing statuses of the entry/exit DNAs (positive, null or negative, respectively). Torsional strain displaces that equilibrium, leading to an extensive reorganization of the fibers architecture. The model explains a number of long-standing topological questions regarding DNA in chromatin and may provide the basis to better understand the dynamic binding of chromatin-associated proteins.Note: In the supplementary information initially published online to accompany this article, Supplementary Figure 2 was mistakenly replaced by Supplementary Equation 2. The error has been corrected online.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Giuseppe Lia; David Bensimon; Vincent Croquette; Jean-François Allemand; David Dunlap; Dale E. A. Lewis; Sankar Adhya; Laura Finzi
The overall topology of DNA profoundly influences the regulation of transcription and is determined by DNA flexibility as well as the binding of proteins that induce DNA torsion, distortion, and/or looping. Gal repressor (GalR) is thought to repress transcription from the two promoters of the gal operon of Escherichia coli by forming a DNA loop of ≈40 nm of DNA that encompasses the promoters. Associated evidence of a topological regulatory mechanism of the transcription repression is the requirement for a supercoiled DNA template and the histone-like heat unstable nucleoid protein (HU). By using single-molecule manipulations to generate and finely tune tension in DNA molecules, we directly detected GalR/HU-mediated DNA looping and characterized its kinetics, thermodynamics, and supercoiling dependence. The factors required for gal DNA looping in single-molecule experiments (HU, GalR and DNA supercoiling) correspond exactly to those necessary for gal repression observed both in vitro and in vivo. Our single-molecule experiments revealed that negatively supercoiled DNA, under slight tension, denatured to facilitate GalR/HU-mediated DNA loop formation. Such topological intermediates may operate similarly in other multiprotein complexes of transcription, replication, and recombination.