Jean-François Brouckaert
Von Karman Institute for Fluid Dynamics
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jean-François Brouckaert.
ASME Turbo Expo 2015: Turbine Technical Conference and Exposition | 2015
J. Sans; Jean-François Brouckaert; S. Hiernaux
The solidity in a compressor is defined as the ratio of the aerodynamic chord over the peripheral distance between two adjacent blades, the pitch. The choice of this parameter represents a crucial step in the whole design process. Most of the studies addressing this issue are based on low-speed compressor cascade correlations. In that prospect, aiming at updating those correlation data as well as improving the physical understanding of the solidity effect on compressor performance, both experimental and numerical high-speed cascade investigations have been carried out at the von Karman Institute. The profile is a state-of-the-art controlled diffusion blade, representative of a low pressure compressor stator mid-span profile. The performance in terms of total pressure losses and deviation have been measured in the high-speed C3 cascade facility for three different solidities at six incidences and two Mach numbers. Based on the experimental results, a numerical linear cascade model has been built and computations have been run with FINE/Turbo at the same conditions as the measurements. The quality of the numerical predictions is discussed over the whole incidence range and, in particular, big discrepancies are highlighted at off-design incidences. Focusing on the solidity effects at mid-span, both experimental and numerical results are compared with existing correlations. The establishment of updated correlations for such controlled diffusion profile is addressed for both deviation and total pressure losses and at both optimum and off-design conditions.Copyright
ASME Turbo Expo 2010: Power for Land, Sea, and Air | 2010
N. Van de Wyer; B. Farkas; J. Desset; Jean-François Brouckaert; J.-F. Thomas; S. Hiernaux
This paper deals with the experimental investigation of the influence of a circumferential groove casing treatment on the performance and stability margin of a single stage low pressure axial compressor. The design of the compressor stage is representative of a booster stage for the new counter-rotating turbofan engine architecture and is characterized by unusually high loading and flow coefficients. The choice of the circumferential groove is described on the basis of a numerical parametric study on the number of grooves, the axial position, the depth and width of the groove. The experiments were performed at a Reynolds number corresponding to cruise conditions in the von Karman Institute closed loop high speed compressor test rig R4. The detailed performance characterization of the compressor stage with casing treatment was mapped at four operating points from choke to stall at design speed. The compressor stall limit was determined at several other off-design speeds. Detailed steady and unsteady measurements were performed to determine the flow field characteristics of the rotor and of the complete stage. Conventional pressure, temperature and directional probes were used along with fast response pressure sensors in the rotor casing and in the groove. Simultaneous traverses with a fast response total pressure probe were used to map the unsteady flow field at the rotor exit allowing an experimental capture of the tip leakage vortex path and extension through the rotor passage. A comparison of the flow features with and without casing treatment was performed and the results are discussed against 3D viscous computational predictions. The casing treatment did not present any improvement of the compressor stall margin but no significant performance degradation was observed either. The CFD predictions showed a good agreement with the measurements and their analysis supported the experimental results.Copyright
ASME Turbo Expo 2009: Power for Land, Sea, and Air | 2009
Jean-François Brouckaert; N. Van de Wyer; B. Farkas; F. Ullmann; J. Desset; J. de Laborderie; M. Chomé; S. Hiernaux
The experimental investigation of the unsteady flow field in a single stage low pressure axial compressor designed for a counter-rotating turbofan engine architecture is presented in this paper. The rotor casing was instrumented with fast response pressure transducers to perform a detailed survey of the tip flow features during stable operation, near stall and during stall. Tests were performed at two different Reynolds numbers representative of cruise and take-off conditions in the VKI-R4 closed loop compressor test rig. Simultaneous time-resolved measurements with a miniature fast response total pressure probe were performed by radial traverses at the rotor exit to support the tip flow field investigation. The casing measurements allow to map the direction and extension of the tip leakage vortex. The flow path measurements show its extension at the exit of the rotor blade passage and its evolution as throttling is increased towards the compressor stability limit. These experimental results are discussed and compared to CFD simulations, showing good agreement. Stall inception and rotating stall patterns are investigated as well and described in this paper. They are based both on hot wire measurements and on the casing unsteady pressure measurements.© 2009 ASME
ASME Turbo Expo 2014: Turbine Technical Conference and Exposition | 2014
J. Sans; M. Resmini; Jean-François Brouckaert; S. Hiernaux
Solidity in compressors is defined as the ratio of the aerodynamic chord over the peripheral distance between two adjacent blades, the pitch. This parameter is simply the inverse of the pitch-to-chord ratio generally used in turbines. Solidity must be selected at the earliest design phase, i.e. at the level of the meridional design and represents a crucial step in the whole design process. Most of the existing studies on this topic rely on low-speed compressor cascade correlations from Carter or Lieblein. The aim of this work is to update those correlations for state-of-the-art controlled diffusion blades, and extend their application to high Mach number flow regimes more typical of modern compressors. Another objective is also to improve the physical understanding of the solidity effect on compressor performance and stability. A numerical investigation has been performed using the commercial software FINE/Turbo. Two different blade profiles were selected and investigated in the compressible flow regime as an extension to the low-speed data on which the correlations are based. The first cascade uses a standard double circular arc profile, extensively referenced in the literature, while the second configuration uses a state-of-the-art CDB, representative of low pressure compressor stator mid-span profile. Both profiles have been designed with the same inlet and outlet metal angles and the same maximum thickness but the camber and thickness distributions, the stagger angle and the leading edge geometry of the CDB have been optimized. The determination of minimum loss, optimum incidence and deviation is addressed and compared with existing correlations for both configurations and various Mach numbers that have been selected in order to match typical booster stall and choke operating conditions. The emphasis is set on the minimum loss performance at mid-span. The impact of the solidity on the operating range and the stability of the cascade are also studied.Copyright
ASME Turbo Expo 2013: Turbine Technical Conference and Exposition | 2013
J. Sans; G. Dell’Era; J. Desset; Jean-François Brouckaert; S. Hiernaux
The experimental investigation of the unsteady flow field in a highly loaded single stage low pressure axial compressor, also called a booster, is presented in this paper. The compressor design is representative of an advanced direct drive turbofan booster. Tests were performed on different speed lines at choke, design, and near stall, in the VKI-R4 closed loop compressor test rig. The rotor casing was instrumented with fast response pressure transducers to perform a detailed survey of the tip flow features. Simultaneous time-resolved measurements with fast response aerodynamic pressure probes were performed by radial and circumferential traverses to map the unsteady flow field at rotor and stator exit. The originality of this paper also resides in the fact that unsteady flow angle data are presented as the probe was used in a virtual 3-hole mode. The casing measurements allow to map the direction and extension of the tip leakage vortex. The flow path measurements show its extension at the exit of the rotor blade passage and its evolution as throttling is increased towards the compressor stability limit. The results are presented in terms of periodic and random fluctuations. These experimental results are combined to provide a three-dimensional view of the experimental flow field. They are discussed and compared to CFD simulations, showing that, in some regions, important features are not captured by the numerical model. In particular, the presence of a second wake has been observed in the unsteady yaw angle map at rotor exit. This uncommon feature is currently under further investigation.Copyright
ASME Turbo Expo 2014: Turbine Technical Conference and Exposition | 2014
J. Sans; M. Resmini; Jean-François Brouckaert; S. Hiernaux
In the use of RANS models, it is well known that the selection of the turbulence model and the numerical scheme may have a critical impact not only in terms of convergence, but also on the reliability to simulate separated or secondary flows in general. The aim of the investigation, performed using the commercial software FINE/Turbo, is the understanding and the quantification of the effects of these two numerical parameters on the performance and the stability of a state-of-the-art controlled diffusion airfoil compressor cascade. A mesh sensitivity analysis has been carried out at both design and off-design conditions. The behaviour of the main flow parameters have been investigated over the whole incidence working range, considering a variation of the inlet Mach number between 0.35 and 0.65. Five different turbulence models have been tested: Baldwin-Lomax, Spalart-Allmaras, k–e Yang-Shih, k–e Launder-Sharma and k–ω SST. In a specific combination of incidences and Mach numbers, the impact of turbulence model settings has been assessed imposing boundary conditions according to different criteria. Two different numerical schemes have been tested: a Jameson central scheme and a second order upwind scheme. The results between the different simulations are discussed in terms of loss coefficient distribution and incidence range; considering the turbulence model comparison, the differences are significant in the whole incidence range, specially approaching the stall limit. Baldwin-Lomax and Spalart-Allmaras simulations present the same value of last stable incidence, while Yang-Shih and SST are characterized by a reduced stall margin. In many operating conditions, simulations computed with centered scheme present negative losses in a wide area of the outlet sections. This problem is reduced if an upwind scheme is used, but causes a substantial reduction of the incidence range.Copyright
Volume 6: Ceramics; Controls, Diagnostics and Instrumentation; Education; Manufacturing Materials and Metallurgy; Honors and Awards | 2015
Giulia Dell’Era; Mehmet Mersinligil; Jean-François Brouckaert
With the advancements in miniaturization and temperature capabilities of piezo-resistive pressure sensors, pneumatic probes — which are the long established standard for flow-path pressure measurements in gas turbine environments — are being replaced with unsteady pressure probes. On the other hand, any measured quantity is by definition inherently different from the ‘true’ value, requiring the estimation of the associated errors for determining the validity of the results and establishing respective confidence intervals. In the context of pressure measurements, the calibration uncertainty values, which differ from measurement uncertainties, are typically provided. Even then, the lack of a standard methodology is evident as uncertainties are often reported without appropriate confidence intervals. Moreover, no time-resolved measurement uncertainty analysis has come to the attention of the authors.The objective of this paper is to present a standard method for the estimation of the uncertainties related to measurements performed using single sensor unsteady pressure probes, with the help of measurements obtained in a one and a half stage low pressure high speed axial compressor test rig as an example. The methodology presented is also valid for similar applications involving the use of steady or unsteady sensors and instruments.The static calibration uncertainty, steady measurement uncertainties and unsteady measurement uncertainties based on phase-locked and ensemble averages are presented by the authors in [1]. Depending on the number of points used for the averaging, different values for uncertainty have been observed, underlining the importance of having greater number of samples. For unsteady flows, higher uncertainties have been observed at regions of higher unsteadiness such as tip leakage vortices, hub corner vortices and blade wakes.Unfortunately, the state of the art in single-sensor miniature unsteady pressure probes is comparable to multi-hole pneumatic probes in size, preventing the use of multi-hole unsteady probes in turbomachinery environments. However, the angular calibration properties of a single sensor probe obtained via an aerodynamic calibration may further be exploited as if a three-hole directional probe is employed, yielding corrected total pressure, unsteady yaw angle, static pressure and Mach number distributions based on the phase-locked averages with the expense of losing the time-correlation between the virtual ports. The aerodynamic calibration and derivation process are presented together with the assessment of the uncertainties associated to these derived quantities in this contribution. In the virtual three-hole mode, similar to that of a single-sensor probe, higher uncertainty values are observed at regions of higher unsteadiness.Copyright
Volume 6: Ceramics; Controls, Diagnostics and Instrumentation; Education; Manufacturing Materials and Metallurgy; Honors and Awards | 2015
Giulia Dell’Era; Mehmet Mersinligil; Jean-François Brouckaert
With the advancements in miniaturization and temperature capabilities of piezo-resistive pressure sensors, pneumatic probes — which are the long established standard for flow-path pressure measurements in gas turbine environments — are being replaced with unsteady pressure probes. Any measured quantity is by definition inherently different from the ‘true’ value, requiring the estimation of the associated errors for determining the validity of the results and establishing respective confidence intervals. In the context of pressure measurements, the calibration uncertainty values, which differ from measurement uncertainties, are typically provided. Even then, the lack of a standard methodology is evident as uncertainties are often reported without appropriate confidence intervals. Moreover, no time-resolved measurement uncertainty analysis has come to the attention of the authors.The objective of this paper is to present a standard method for the estimation of the uncertainties related to measurements performed using single sensor unsteady pressure probes, with the help of measurements obtained in a one and a half stage low pressure high speed axial compressor test rig as an example. The methodology presented is also valid for similar applications involving the use of steady or unsteady sensors and instruments.The static calibration uncertainty, steady measurement uncertainties and unsteady measurement uncertainties based on phase-locked and ensemble averages are presented in this contribution. Depending on the number of points used for the averaging, different values for uncertainty have been observed, underlining the importance of having greater number of samples. For unsteady flows, higher uncertainties have been observed at regions of higher unsteadiness such as tip leakage vortices, hub corner vortices and blade wakes.Unfortunately, the state of the art in single-sensor miniature unsteady pressure probes is comparable to multi-hole pneumatic probes in size, preventing the use of multi-hole unsteady probes in turbomachinery environments. However, the angular calibration properties of a single sensor probe obtained via an aerodynamic calibration may further be exploited as if a three-hole directional probe is employed, yielding corrected total pressure, unsteady yaw angle, static pressure and Mach number distributions based on the phase-locked averages with the expense of losing the time-correlation between the virtual ports. The aerodynamic calibration and derivation process are presented together with the assessment of the uncertainties associated to these derived quantities by the authors in [1]. In the virtual three-hole mode, similar to that of a single-sensor probe, higher uncertainty values are observed at regions of higher unsteadiness.© 2015 ASME
Volume 1: Aircraft Engine; Ceramics; Coal, Biomass and Alternative Fuels; Controls, Diagnostics and Instrumentation | 2012
Nicolas Van de Wyer; Jean-François Brouckaert; Rinaldo L. Miorini
This paper deals with the use of the infinite line pressure probes (ILP) to measure fluctuating pressures in hot environments in turbomachinery applications. These probes, sometimes called waveguide measuring systems, and composed of a series of lines and cavities are using a remote pressure sensor. Ideally they should form a non-resonant system. This is however not always the case and the frequency response of these systems is of course limited by the tubing (diameter and length) but is also highly dependent on other geometrical parameters like sudden expansions or discontinuities in the tubing, or parasite cavities. The development of a new model for ILP simulation, based on the analogy between the propagation of the pressure waves in a line-cavity system and the electrical transmission line, is presented. Unlike the models based on the Bergh and Tijdeman equations, this approach allows the simulation of systems presenting parallel branches. This makes the model appropriate for the prediction of the frequency response of ILP. The model is validated by a comparison of the results with the theory of Bergh and Tijdeman, and with experimental results from the literature and from shock tube tests. Finally, the model is applied for the optimization of ILPs, representative of the systems used in the aeronautics industry, and compared to the experimental results performed on an axial compressor. In those tests, a typical ILP geometry is installed on the compressor casing to measure static pressure fluctuations in the rotor tip gap. Simultaneous measurements with a fast response flush-mounted sensor provided data for comparison and validation of the predicted transfer function.Copyright
Journal of Engineering for Gas Turbines and Power-transactions of The Asme | 2015
Giulia Dell'Era; Mehmet Mersinligil; Jean-François Brouckaert