Jean-François Eléouët
Institut national de la recherche agronomique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jean-François Eléouët.
Science | 2009
Rajiv G. Tawar; Stéphane Duquerroy; Clemens Vonrhein; Paloma F. Varela; Laurence Damier-Piolle; Nathalie Castagné; Kirsty MacLellan; Hugues Bedouelle; Gérard Bricogne; David Bhella; Jean-François Eléouët; Félix A. Rey
RSV in 3D Respiratory syncytial virus (RSV) causes pneumonia and bronchiolitis in infants. RSV is an RNA virus in which the genomic RNA forms part of a nuclease-resistant helical ribonucleoprotein complex. Tawar et al. (p. 1279) now use x-ray and electron microscopy data to model the structure of this nucleocapsid complex and show how it can template RNA synthesis. The crystal structure shows RNA wrapped around a decameric ring of nucleocapsid protein. Combining this structure with electron microscopy data gives a model that shows how polymerase might read out the RNA bases without disassembling the nucleocapsid helix. In negative-strand RNA viruses, viral RNA wraps around a nucleocapsid helix with the bases accessible to the viral polymerase. The respiratory syncytial virus (RSV) is an important human pathogen, yet neither a vaccine nor effective therapies are available to treat infection. To help elucidate the replication mechanism of this RNA virus, we determined the three-dimensional (3D) crystal structure at 3.3 Å resolution of a decameric, annular ribonucleoprotein complex of the RSV nucleoprotein (N) bound to RNA. This complex mimics one turn of the viral helical nucleocapsid complex, which serves as template for viral RNA synthesis. The RNA wraps around the protein ring, with seven nucleotides contacting each N subunit, alternating rows of four and three stacked bases that are exposed and buried within a protein groove, respectively. Combined with electron microscopy data, this structure provides a detailed model for the RSV nucleocapsid, in which the bases are accessible for readout by the viral polymerase. Furthermore, the nucleoprotein structure highlights possible key sites for drug targeting.
Veterinary Research | 2013
Virginie Doceul; Estelle Lara; Corinne Sailleau; Guillaume Belbis; Jennifer Richardson; Emmanuel Bréard; Cyril Viarouge; Morgane Dominguez; Pascal Hendrikx; Didier Calavas; Alexandra Desprat; Jérôme Languille; Loic Comtet; Philippe Pourquier; Jean-François Eléouët; Bernard Delmas; Philippe Marianneau; Damien Vitour; Stéphan Zientara
After the unexpected emergence of Bluetongue virus serotype 8 (BTV-8) in northern Europe in 2006, another arbovirus, Schmallenberg virus (SBV), emerged in Europe in 2011 causing a new economically important disease in ruminants. The virus, belonging to the Orthobunyavirus genus in the Bunyaviridae family, was first detected in Germany, in The Netherlands and in Belgium in 2011 and soon after in the United Kingdom, France, Italy, Luxembourg, Spain, Denmark and Switzerland. This review describes the current knowledge on the emergence, epidemiology, clinical signs, molecular virology and diagnosis of SBV infection.
Journal of Virology | 2000
Jean-François Eléouët; Elizabeth A. Slee; Françoise Saurini; Nathalie Castagné; Didier Poncet; Carmen Garrido; Eric Solary; Seamus J. Martin
ABSTRACT The transmissible gastroenteritis coronavirus (TGEV), like many other viruses, exerts much of its cytopathic effect through the induction of apoptosis of its host cell. Apoptosis is coordinated by a family of cysteine proteases, called caspases, that are activated during apoptosis and participate in dismantling the cell by cleaving key structural and regulatory proteins. We have explored the caspase activation events that are initiated upon infection of the human rectal tumor cell line HRT18 with TGEV. We show that TGEV infection results in the activation of caspase-3, -6, -7, -8, and -9 and cleavage of the caspase substrates eIF4GI, gelsolin, and α-fodrin. Surprisingly, the TGEV nucleoprotein (N) underwent proteolysis in parallel with the activation of caspases within the host cell. Cleavage of the N protein was inhibited by cell-permeative caspase inhibitors, suggesting that this viral structural protein is a target for host cell caspases. We show that the TGEV nucleoprotein is a substrate for both caspase-6 and -7, and using site-directed mutagenesis, we have mapped the cleavage site to VVPD359↓. These data demonstrate that viral proteins can be targeted for destruction by the host cell death machinery.
Journal of Virology | 2009
Thi-Lan Tran; Nathalie Castagné; Virginie Dubosclard; Sylvie Noinville; Emmanuelle Koch; Mohammed Moudjou; Céline Henry; Julie Bernard; Robert P. Yeo; Jean-François Eléouët
ABSTRACT The respiratory syncytial virus (RSV) M2-1 protein is an essential cofactor of the viral RNA polymerase complex and functions as a transcriptional processivity and antitermination factor. M2-1, which exists in a phosphorylated or unphosphorylated form in infected cells, is an RNA-binding protein that also interacts with some of the other components of the viral polymerase complex. It contains a CCCH motif, a putative zinc-binding domain that is essential for M2-1 function, at the N terminus. To gain insight into its structural organization, M2-1 was produced as a recombinant protein in Escherichia coli and purified to >95% homogeneity by using a glutathione S-transferase (GST) tag. The GST-M2-1 fusion proteins were copurified with bacterial RNA, which could be eliminated by a high-salt wash. Circular dichroism analysis showed that M2-1 is largely α-helical. Chemical cross-linking, dynamic light scattering, sedimentation velocity, and electron microscopy analyses led to the conclusion that M2-1 forms a 5.4S tetramer of 89 kDa and ∼7.6 nm in diameter at micromolar concentrations. By using a series of deletion mutants, the oligomerization domain of M2-1 was mapped to a putative α-helix consisting of amino acid residues 32 to 63. When tested in an RSV minigenome replicon system using a luciferase gene as a reporter, an M2-1 deletion mutant lacking this region showed a significant reduction in RNA transcription compared to wild-type M2-1, indicating that M2-1 oligomerization is essential for the activity of the protein. We also show that the region encompassing amino acid residues 59 to 178 binds to P and RNA in a competitive manner that is independent of the phosphorylation status of M2-1.
PLOS Pathogens | 2012
Marie-Lise Blondot; Virginie Dubosclard; Jenna Fix; Safa Lassoued; Magali Aumont-Nicaise; François Bontems; Jean-François Eléouët; Christina Sizun
Respiratory syncytial virus (RSV) protein M2-1 functions as an essential transcriptional cofactor of the viral RNA-dependent RNA polymerase (RdRp) complex by increasing polymerase processivity. M2-1 is a modular RNA binding protein that also interacts with the viral phosphoprotein P, another component of the RdRp complex. These binding properties are related to the core region of M2-1 encompassing residues S58 to K177. Here we report the NMR structure of the RSV M2-158–177 core domain, which is structurally homologous to the C-terminal domain of Ebola virus VP30, a transcription co-factor sharing functional similarity with M2-1. The partial overlap of RNA and P interaction surfaces on M2-158–177, as determined by NMR, rationalizes the previously observed competitive behavior of RNA versus P. Using site-directed mutagenesis, we identified eight residues located on these surfaces that are critical for an efficient transcription activity of the RdRp complex. Single mutations of these residues disrupted specifically either P or RNA binding to M2-1 in vitro. M2-1 recruitment to cytoplasmic inclusion bodies, which are regarded as sites of viral RNA synthesis, was impaired by mutations affecting only binding to P, but not to RNA, suggesting that M2-1 is associated to the holonucleocapsid by interacting with P. These results reveal that RNA and P binding to M2-1 can be uncoupled and that both are critical for the transcriptional antitermination function of M2-1.
Journal of General Virology | 2013
Saskia E. Bakker; Stéphane Duquerroy; Marie Galloux; Colin Loney; Edward Conner; Jean-François Eléouët; Félix A. Rey; David Bhella
Respiratory syncytial virus (RSV) is an important human pathogen. Its nucleocapsid (NC), which comprises the negative sense RNA viral genome coated by the viral nucleoprotein N, is a critical assembly that serves as template for both mRNA synthesis and genome replication. We have previously described the X-ray structure of an NC-like structure: a decameric ring formed of N-RNA that mimics one turn of the helical NC. In the absence of experimental data we had hypothesized that the NC helix would be right-handed, as the N–N contacts in the ring appeared to more easily adapt to that conformation. We now unambiguously show that the RSV NC is a left-handed helix. We further show that the contacts in the ring can be distorted to maintain key N–N-protein interactions in a left-handed helix, and discuss the implications of the resulting atomic model of the helical NC for viral replication and transcription.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Sian J. Tanner; Antonio Ariza; Charles-Adrien Richard; Hannah F. Kyle; Rachel L. Dods; Marie-Lise Blondot; Weining Wu; José Trincão; Chi H. Trinh; Julian A. Hiscox; Miles W. Carroll; Nigel J. Silman; Jean-François Eléouët; Thomas A. Edwards; John N. Barr
Significance Human respiratory syncytial virus (HRSV) is the leading cause of lower respiratory tract illness in young children; however, no vaccine exists and current immunoprophylaxis regimes are both expensive and incompletely protective. We report the crystal structure of the HRSV M2-1 transcription factor that is essential for virus gene expression and thus growth. This structure reveals how M2-1 forms an extremely stable tetramer and has allowed us to pinpoint the location of critical regions that regulate M2-1 activity, providing insight into its function. This structure may represent a potent target for new antiviral compounds. The M2-1 protein of the important pathogen human respiratory syncytial virus is a zinc-binding transcription antiterminator that is essential for viral gene expression. We present the crystal structure of full-length M2-1 protein in its native tetrameric form at a resolution of 2.5 Å. The structure reveals that M2-1 forms a disk-like assembly with tetramerization driven by a long helix forming a four-helix bundle at its center, further stabilized by contact between the zinc-binding domain and adjacent protomers. The tetramerization helix is linked to a core domain responsible for RNA binding activity by a flexible region on which lie two functionally critical serine residues that are phosphorylated during infection. The crystal structure of a phosphomimetic M2-1 variant revealed altered charge density surrounding this flexible region although its position was unaffected. Structure-guided mutagenesis identified residues that contributed to RNA binding and antitermination activity, revealing a strong correlation between these two activities, and further defining the role of phosphorylation in M2-1 antitermination activity. The data we present here identify surfaces critical for M2-1 function that may be targeted by antiviral compounds.
The Open Virology Journal | 2011
Jenna Fix; Marie Galloux; Marie-Lise Blondot; Jean-François Eléouët
The respiratory syncytial virus (RSV) Large protein L is the catalytic subunit of the RNA-dependent RNA polymerase complex. Currently, no structural information is available for RSV L. Sequence alignments of L protein from human and bovine strains of RSV revealed the existence of two variable regions, VR1 and VR2. Following comparison with morbillivirus and rhabdovirus L genes, VR2, which is located between domains V and VI, was chosen as an insertion site for sequences encoding the epitope tag HA or the fluorescent proteins eGFP and mCherry. Recombinant tagged-L proteins co-localized with RSV N and P proteins in transfected cells. These recombinant polymerases were shown to be functional using a viral minigenome system assay, their activities being reduced by ~70% compared to the unmodified L polymerase. We have also shown by site-directed mutagenesis that the GDNQ motif (residues 810-813 for the Long strain of HRSV) is essential for L activity.
Nature Communications | 2014
Marie-Anne Rameix-Welti; Ronan Le Goffic; Pierre-Louis Hervé; Julien Sourimant; Aude Remot; Sabine Riffault; Qin Yu; Marie Galloux; Elyanne Gault; Jean-François Eléouët
Respiratory syncytial virus (RSV) is the most important cause of severe lower-respiratory tract disease in calves and young children, yet no human vaccine nor efficient curative treatments are available. Here we describe a recombinant human RSV reverse genetics system in which the red fluorescent protein (mCherry) or the firefly luciferase (Luc) genes are inserted into the RSV genome. Expression of mCherry and Luc are correlated with infection rate, allowing the monitoring of RSV multiplication in cell culture. Replication of the Luc-encoding virus in living mice can be visualized by bioluminescent imaging, bioluminescence being detected in the snout and lungs of infected mice after nasal inoculation. We propose that these recombinant viruses are convenient and valuable tools for screening of compounds active against RSV, and can be used as an extremely sensitive readout for studying effects of antiviral therapeutics in living mice. Supplementary information The online version of this article (doi:10.1038/ncomms6104) contains supplementary material, which is available to authorized users.
Journal of Virology | 2014
Pierre-Louis Hervé; Mariam Raliou; Christiane Bourdieu; Catherine Dubuquoy; Agnès Petit-Camurdan; Nicolas Bertho; Jean-François Eléouët; Christophe Chevalier; Sabine Riffault
ABSTRACT In this study, subnucleocapsid nanorings formed by the recombinant nucleoprotein (N) of the respiratory syncytial virus were evaluated as a platform to anchor heterologous antigens. The ectodomain of the influenza virus A matrix protein 2 (M2e) is highly conserved and elicits protective antibodies when it is linked to an immunogenic carrier, making it a promising target to develop universal influenza vaccines. In this context, one or three M2e copies were genetically linked to the C terminus of N to produce N-M2e and N-3M2e chimeric recombinant nanorings. Mice were immunized intranasally with N-M2e or N-3M2e or with M2e or 3M2e control peptides. N-3M2e-vaccinated mice showed the strongest mucosal and systemic antibody responses. These mice presented a reduced viral load and minor weight loss, and all survived upon challenge with influenza virus A/PR8/34 (H1N1) (PR8). We compared the intranasal route to the subcutaneous route of N-3M2e immunization. Only the intranasal route induced a strong local IgA response and led to the protection of mice upon challenge. Finally, we demonstrated that the induction of anti-M2e antibodies by N-3M2e is not impaired by preexisting anti-N immunity. Overall, these results show that the N nanoring is a potent carrier for mucosal delivery of vaccinal antigens.