Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jean-François Flot is active.

Publication


Featured researches published by Jean-François Flot.


Molecular Ecology Resources | 2010

seqphase: a web tool for interconverting phase input/output files and fasta sequence alignments.

Jean-François Flot

The program phase is widely used for Bayesian inference of haplotypes from diploid genotypes; however, manually creating phase input files from sequence alignments is an error‐prone and time‐consuming process, especially when dealing with numerous variable sites and/or individuals. Here, a web tool called seqphase is presented that generates phase input files from fasta sequence alignments and converts phase output files back into fasta. During the production of the phase input file, several consistency checks are performed on the dataset and suitable command line options to be used for the actual phase data analysis are suggested. seqphase was written in perl and is freely accessible over the Internet at the address http://www.mnhn.fr/jfflot/seqphase.


Nature | 2013

Genomic evidence for ameiotic evolution in the bdelloid rotifer Adineta vaga

Jean-François Flot; Boris Hespeels; Xiang Li; Benjamin Noel; Irina R. Arkhipova; Etienne Danchin; Andreas Hejnol; Bernard Henrissat; Romain Koszul; Jean-Marc Aury; Valérie Barbe; Roxane Marie Barthélémy; Jens Bast; Georgii A. Bazykin; Olivier Chabrol; Arnaud Couloux; Martine Da Rocha; Corinne Da Silva; Eugene Gladyshev; Philippe Gouret; Oskar Hallatschek; Bette Hecox-Lea; Karine Labadie; Benjamin Lejeune; Oliver Piskurek; Julie Poulain; Fernando Rodriguez; Joseph F. Ryan; O. Vakhrusheva; Eric Wajnberg

Loss of sexual reproduction is considered an evolutionary dead end for metazoans, but bdelloid rotifers challenge this view as they appear to have persisted asexually for millions of years. Neither male sex organs nor meiosis have ever been observed in these microscopic animals: oocytes are formed through mitotic divisions, with no reduction of chromosome number and no indication of chromosome pairing. However, current evidence does not exclude that they may engage in sex on rare, cryptic occasions. Here we report the genome of a bdelloid rotifer, Adineta vaga (Davis, 1873), and show that its structure is incompatible with conventional meiosis. At gene scale, the genome of A. vaga is tetraploid and comprises both anciently duplicated segments and less divergent allelic regions. However, in contrast to sexual species, the allelic regions are rearranged and sometimes even found on the same chromosome. Such structure does not allow meiotic pairing; instead, we find abundant evidence of gene conversion, which may limit the accumulation of deleterious mutations in the absence of meiosis. Gene families involved in resistance to oxidation, carbohydrate metabolism and defence against transposons are significantly expanded, which may explain why transposable elements cover only 3% of the assembled sequence. Furthermore, 8% of the genes are likely to be of non-metazoan origin and were probably acquired horizontally. This apparent convergence between bdelloids and prokaryotes sheds new light on the evolutionary significance of sex.


eLife | 2014

Metagenomic chromosome conformation capture (meta3C) unveils the diversity of chromosome organization in microorganisms

Martial Marbouty; Axel Cournac; Jean-François Flot; Hervé Marie-Nelly; Julien Mozziconacci; Romain Koszul

Genomic analyses of microbial populations in their natural environment remain limited by the difficulty to assemble full genomes of individual species. Consequently, the chromosome organization of microorganisms has been investigated in a few model species, but the extent to which the features described can be generalized to other taxa remains unknown. Using controlled mixes of bacterial and yeast species, we developed meta3C, a metagenomic chromosome conformation capture approach that allows characterizing individual genomes and their average organization within a mix of organisms. Not only can meta3C be applied to species already sequenced, but a single meta3C library can be used for assembling, scaffolding and characterizing the tridimensional organization of unknown genomes. By applying meta3C to a semi-complex environmental sample, we confirmed its promising potential. Overall, this first meta3C study highlights the remarkable diversity of microorganisms chromosome organization, while providing an elegant and integrated approach to metagenomic analysis. DOI: http://dx.doi.org/10.7554/eLife.03318.001


Nature Communications | 2014

High-quality genome (re)assembly using chromosomal contact data

Hervé Marie-Nelly; Martial Marbouty; Axel Cournac; Jean-François Flot; Gianni Liti; Dante Poggi Dp Parodi; Sylvie Syan; Nancy Guillén; Antoine Margeot; Christophe Zimmer; Romain Koszul

Closing gaps in draft genome assemblies can be costly and time-consuming, and published genomes are therefore often left ‘unfinished.’ Here we show that genome-wide chromosome conformation capture (3C) data can be used to overcome these limitations, and present a computational approach rooted in polymer physics that determines the most likely genome structure using chromosomal contact data. This algorithm—named GRAAL—generates high-quality assemblies of genomes in which repeated and duplicated regions are accurately represented and offers a direct probabilistic interpretation of the computed structures. We first validated GRAAL on the reference genome of Saccharomyces cerevisiae, as well as other yeast isolates, where GRAAL recovered both known and unknown complex chromosomal structural variations. We then applied GRAAL to the finishing of the assembly of Trichoderma reesei and obtained a number of contigs congruent with the know karyotype of this species. Finally, we showed that GRAAL can accurately reconstruct human chromosomes from either fragments generated in silico or contigs obtained from de novo assembly. In all these applications, GRAAL compared favourably to recently published programmes implementing related approaches.


BMC Biology | 2017

The house spider genome reveals an ancient whole-genome duplication during arachnid evolution.

Evelyn E. Schwager; Prashant P. Sharma; Thomas H. Clarke; Daniel J. Leite; Torsten Wierschin; Matthias Pechmann; Yasuko Akiyama-Oda; Lauren Esposito; Jesper Bechsgaard; Trine Bilde; Alexandra D. Buffry; Hsu Chao; Huyen Dinh; HarshaVardhan Doddapaneni; Shannon Dugan; Cornelius Eibner; Cassandra G. Extavour; Peter Funch; Jessica E. Garb; Luis B. Gonzalez; Vanessa L. González; Sam Griffiths-Jones; Yi Han; Cheryl Y. Hayashi; Maarten Hilbrant; Daniel S.T. Hughes; Ralf Janssen; Sandra L. Lee; Ignacio Maeso; Shwetha C. Murali

BackgroundThe duplication of genes can occur through various mechanisms and is thought to make a major contribution to the evolutionary diversification of organisms. There is increasing evidence for a large-scale duplication of genes in some chelicerate lineages including two rounds of whole genome duplication (WGD) in horseshoe crabs. To investigate this further, we sequenced and analyzed the genome of the common house spider Parasteatoda tepidariorum.ResultsWe found pervasive duplication of both coding and non-coding genes in this spider, including two clusters of Hox genes. Analysis of synteny conservation across the P. tepidariorum genome suggests that there has been an ancient WGD in spiders. Comparison with the genomes of other chelicerates, including that of the newly sequenced bark scorpion Centruroides sculpturatus, suggests that this event occurred in the common ancestor of spiders and scorpions, and is probably independent of the WGDs in horseshoe crabs. Furthermore, characterization of the sequence and expression of the Hox paralogs in P. tepidariorum suggests that many have been subject to neo-functionalization and/or sub-functionalization since their duplication.ConclusionsOur results reveal that spiders and scorpions are likely the descendants of a polyploid ancestor that lived more than 450 MYA. Given the extensive morphological diversity and ecological adaptations found among these animals, rivaling those of vertebrates, our study of the ancient WGD event in Arachnopulmonata provides a new comparative platform to explore common and divergent evolutionary outcomes of polyploidization events across eukaryotes.


Coral Reefs | 2007

Molecular identification of symbiotic dinoflagellates in Pacific corals in the genus Pocillopora

Hélène Magalon; Jean-François Flot; Emmanuelle Baudry

The authors regret that they made an error in reporting the primers used to amplify and sequence the ITS1 region, mentioned in the Material and methods section. The primer ITSint-rev was incorrectly reported and an internal primer which was incorrectly omitted has been added below. Materials and methods PCR amplifications of zooxanthellae nrDNA [The second paragraph of this section should be replaced with the following text] To investigate zooxanthella diversity in more detail, the Internal Transcribed Spacer 1 region (ITS1), which is a non-coding region that evolves faster than the 28S nrDNA (Santos et al. 2002a), was sequenced. Two primers were used to amplify both ITS1 and ITS2: one designed in the 3 0-end of the 18S DNA [ITS-for: 5 0-CGG TGA ATT ATT CGG ACT GAC-3 0 ; reverse of SYM3, modified from Hunter et al. (1997)] and the other in the 5 0-end of the 28S DNA [ITS-rev: 5 0-TCC TCC GCT TAT TGA TAT GC-3 0 from Hunter et al. (1997)]. The PCR protocol was identical to that of 28S nrDNA amplification, except amplifications were carried out in a total volume of 30 ll. Amplified products were purified using QIAquick PCR purification kit (Qiagen) following the manufacturers instructions and ITS1 region was directly sequenced in both directions using 3.2 pmol of the primer ITS-for and an internal primer in the 5.8S region [ITSint-rev: 5 0-CAC GGA GTT CTG CAA TTC-3 0 (reverse of ITSintfor2 from LaJeunesse and Trench (2000))]. [The region ITS2 can be sequenced using ITS-rev and ITSintfor2 from LaJeunesse and Trench (2000).] Reagents and cycling conditions were as specified in the ABI Prism Big Dye Terminator Cycle Sequencing Ready Reaction kit (PE Applied Biosystems, Foster City, California).


FEBS Letters | 2015

Contact genomics: scaffolding and phasing (meta)genomes using chromosome 3D physical signatures.

Jean-François Flot; Hervé Marie-Nelly; Romain Koszul

High‐throughput DNA sequencing technologies are fuelling an accelerating trend to assemblede novo or resequence the genomes of numerous species as well as to complete unfinished assemblies. While current DNA sequencing technologies remain limited to reading stretches of a few hundreds or thousands of base pairs, experimental and computational methods are continuously improving with the goal of assembling entire genomes from large numbers of short DNA sequences. However, the algorithms that piece together DNA strands face important limitations due, notably, to the presence of repeated sequences or of multiple haplotypes within one genome, thus leaving many assemblies incomplete. Recently, the realization that the physical contacts experienced by a portion of a DNA molecule could be used as a robust and quantitative assay to determine its genomic position has led to the emerging field of contact genomics, which promises to revolutionize current genome assembly approaches by exploiting the flexible polymer properties of chromosomes. Here we review the current applications of contact genomics to genome scaffolding, haplotyping and metagenomic assembly, then outline the future developments we envision.


PLOS Genetics | 2017

Hybridization and polyploidy enable genomic plasticity without sex in the most devastating plant-parasitic nematodes

Romain Blanc-Mathieu; Laetitia Perfus-Barbeoch; Jean-Marc Aury; Martine Da Rocha; Jérôme Gouzy; Erika Sallet; Cristina Martin-Jimenez; Marc Bailly-Bechet; Philippe Castagnone-Sereno; Jean-François Flot; Djampa Kozlowski; Julie Cazareth; Arnaud Couloux; Corinne Da Silva; Julie Guy; Yu-Jin Kim-Jo; Corinne Rancurel; Thomas Schiex; Pierre Abad; Patrick Wincker; Etienne Danchin

Root-knot nematodes (genus Meloidogyne) exhibit a diversity of reproductive modes ranging from obligatory sexual to fully asexual reproduction. Intriguingly, the most widespread and devastating species to global agriculture are those that reproduce asexually, without meiosis. To disentangle this surprising parasitic success despite the absence of sex and genetic exchanges, we have sequenced and assembled the genomes of three obligatory ameiotic and asexual Meloidogyne. We have compared them to those of relatives able to perform meiosis and sexual reproduction. We show that the genomes of ameiotic asexual Meloidogyne are large, polyploid and made of duplicated regions with a high within-species average nucleotide divergence of ~8%. Phylogenomic analysis of the genes present in these duplicated regions suggests that they originated from multiple hybridization events and are thus homoeologs. We found that up to 22% of homoeologous gene pairs were under positive selection and these genes covered a wide spectrum of predicted functional categories. To biologically assess functional divergence, we compared expression patterns of homoeologous gene pairs across developmental life stages using an RNAseq approach in the most economically important asexually-reproducing nematode. We showed that >60% of homoeologous gene pairs display diverged expression patterns. These results suggest a substantial functional impact of the genome structure. Contrasting with high within-species nuclear genome divergence, mitochondrial genome divergence between the three ameiotic asexuals was very low, signifying that these putative hybrids share a recent common maternal ancestor. Transposable elements (TE) cover a ~1.7 times higher proportion of the genomes of the ameiotic asexual Meloidogyne compared to the sexual relative and might also participate in their plasticity. The intriguing parasitic success of asexually-reproducing Meloidogyne species could be partly explained by their TE-rich composite genomes, resulting from allopolyploidization events, and promoting plasticity and functional divergence between gene copies in the absence of sex and meiosis.


Scientific Reports | 2017

A genomic glance through the fog of plasticity and diversification in Pocillopora

Erika C. Johnston; Zac H. Forsman; Jean-François Flot; Sebastian Schmidt-Roach; Jorge J.H. Pinzón; Ingrid S. Knapp; Robert J. Toonen

Scleractinian corals of the genus Pocillopora (Lamarck, 1816) are notoriously difficult to identify morphologically with considerable debate on the degree to which phenotypic plasticity, introgressive hybridization and incomplete lineage sorting obscure well-defined taxonomic lineages. Here, we used RAD-seq to resolve the phylogenetic relationships among seven species of Pocillopora represented by 15 coral holobiont metagenomic libraries. We found strong concordance between the coral holobiont datasets, reads that mapped to the Pocillopora damicornis (Linnaeus, 1758) transcriptome, nearly complete mitochondrial genomes, 430 unlinked high-quality SNPs shared across all Pocillopora taxa, and a conspecificity matrix of the holobiont dataset. These datasets also show strong concordance with previously published clustering of the mitochondrial clades based on the mtDNA open reading frame (ORF). We resolve seven clear monophyletic groups, with no evidence for introgressive hybridization among any but the most recently derived sister species. In contrast, ribosomal and histone datasets, which are most commonly used in coral phylogenies to date, were less informative and contradictory to these other datasets. These data indicate that extant Pocillopora species diversified from a common ancestral lineage within the last ~3 million years. Key to this evolutionary success story may be the high phenotypic plasticity exhibited by Pocillopora species.


PLOS ONE | 2015

Morphological Evolution of Coexisting Amphipod Species Pairs from Sulfidic Caves Suggests Competitive Interactions and Character Displacement, but No Environmental Filtering and Convergence

Cene Fišer; Roman Luštrik; Serban M. Sarbu; Jean-François Flot; Peter Trontelj

Phenotypically similar species coexisting in extreme environments like sulfidic water are subject to two opposing eco-evolutionary processes: those favoring similarity of environment-specific traits, and those promoting differences of traits related to resource use. The former group of processes includes ecological filtering and convergent or parallel evolution, the latter competitive exclusion, character displacement and divergent evolution. We used a unique eco-evolutionary study system composed of two independent pairs of coexisting amphipod species (genus Niphargus) from the sulfidic caves Movile in Romania and Frasassi in Italy to study the relative contribution and interaction of both processes. We looked at the shape of the multifunctional ventral channel as a trait ostensibly related to oxygenation and sulfide detoxification, and at body size as a resource-related trait. Phylogenetic analysis suggests that the sulfidic caves were colonized separately by ancestors of each species. Species within pairs were more dissimilar in their morphology than expected according to a null model based on regional species pool. This might indicate competitive interactions shaping the morphology of these amphipod species. Moreover, our results suggest that the shape of the ventral channel is not subject to long-term convergent selection or to the process of environmental filtering, and as such probably does not play a role in sulfide tolerance. Nevertheless, the ancestral conditions reconstructed using the comparative method tended to be more similar than null-model expectations. This shift in patterns may reflect a temporal hierarchy of eco-evolutionary processes, in which initial environmental filtering became later on superseded by character displacement or other competition-driven divergent evolutionary processes.

Collaboration


Dive into the Jean-François Flot's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Etienne Danchin

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cene Fišer

University of Ljubljana

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Serban M. Sarbu

California State University

View shared research outputs
Top Co-Authors

Avatar

Arnaud Couloux

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Martine Da Rocha

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge