Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jean-François Maguer is active.

Publication


Featured researches published by Jean-François Maguer.


The Journal of Experimental Biology | 2008

Uptake of dissolved free amino acids by the scleractinian coral Stylophora pistillata.

Renaud Grover; Jean-François Maguer; Denis Allemand; Christine Ferrier-Pagès

SUMMARY This study was designed to assess the importance of dissolved free amino acids (DFAA) as a nitrogen source for the scleractinian coral Stylophora pistillata. For this purpose, experiments were performed using 15N-enriched DFAAs, and %15N enrichment was measured both in animal tissue and zooxanthellae at different DFAA concentrations, incubation time and light levels. As previously observed for urea, which is another source of organic nitrogen, DFAA uptake exhibited a biphasic mode consisting of an active carrier-mediated transport for concentrations below 3μ mol l–1 and a linear uptake for higher concentrations. The value of the carrier affinity (Km=1.23 μmol l–1 DFAA) indicated good adaptation of the corals to the low levels of DFAA concentrations measured in most oligotrophic waters. DFAA uptake was also correlated with light. The DFAA contribution to the nitrogen requirements for tissue growth was compared to the contribution of ammonia, nitrate and urea, for which uptake was also measured in S. pistillata. Inorganic sources (NH4+ and NO3–) contributed 75% of the daily nitrogen needs against 24% for organic sources. Taken altogether, dissolved organic and inorganic nitrogen can supply almost 100% of the nitrogen needs for tissue growth.


Journal of Phycology | 2007

NITROGEN UPTAKE AND ASSIMILATION KINETICS IN ALEXANDRIUM MINUTUM (DYNOPHYCEAE): EFFECT OF N‐LIMITED GROWTH RATE ON NITRATE AND AMMONIUM INTERACTIONS1

Jean-François Maguer; Stéphane L'Helguen; Christian Madec; Claire Labry; Pierre Le Corre

Uptake and assimilation kinetics of nitrate and ammonium were investigated along with inhibition of nitrate uptake by ammonium in the harmful dinoflagellate Alexandrium minutum Halim at different nitrogen (N)–limited growth rates. Alexandrium minutum had a strong affinity for nitrate and ammonium (Ks=0.26±0.03 and 0.31±0.04 μmol·L−1, respectively) whatever the degree of N deficiency of the cells. Ammonium was always the preferred form of nitrogen taken up (=0.42–0.50). In the presence of both forms, nitrate uptake was inhibited by ammonium, and inhibition was particularly marked in N‐sufficient cells (Imax∼0.9 and Ki=0.31–0.56 μmol·L−1). In the case of N assimilation, ammonium was also the preferred form in N‐deficient cells (=0.54–0.72), whereas in N‐sufficient cells, both N sources were equally preferred (=0.90–1.00). The comparison of uptake and assimilation rates highlighted the ability of A. minutum to significantly store in 1 h nitrate and ammonium in amounts sufficient to supply twice the daily N requirements of the slowest‐growing N‐deficient cells. Nitrogen uptake kinetic parameters of A. minutum and their ecological implications are discussed.


Proceedings of the Royal Society B: Biological Sciences | 2015

New insights into carbon acquisition and exchanges within the coral-dinoflagellate symbiosis under NH4+ and NO3- supply.

Leïla Ezzat; Jean-François Maguer; Renaud Grover; Christine Ferrier-Pagès

Anthropogenic nutrient enrichment affects the biogeochemical cycles and nutrient stoichiometry of coastal ecosystems and is often associated with coral reef decline. However, the mechanisms by which dissolved inorganic nutrients, and especially nitrogen forms (ammonium versus nitrate) can disturb the association between corals and their symbiotic algae are subject to controversial debate. Here, we investigated the coral response to varying N : P ratios, with nitrate or ammonium as a nitrogen source. We showed significant differences in the carbon acquisition by the symbionts and its allocation within the symbiosis according to nutrient abundance, type and stoichiometry. In particular, under low phosphate concentration (0.05 µM), a 3 µM nitrate enrichment induced a significant decrease in carbon fixation rate and low values of carbon translocation, compared with control conditions (N : P = 0.5 : 0.05), while these processes were significantly enhanced when nitrate was replaced by ammonium. A combined enrichment in ammonium and phosphorus (N : P = 3 : 1) induced a shift in nutrient allocation to the symbionts, at the detriment of the host. Altogether, these results shed light into the effect of nutrient enrichment on reef corals. More broadly, they improve our understanding of the consequences of nutrient loading on reef ecosystems, which is urgently required to refine risk management strategies.


Mbio | 2017

The Assimilation of Diazotroph-Derived Nitrogen by Scleractinian Corals Depends on Their Metabolic Status

Vanessa N. Bednarz; Renaud Grover; Jean-François Maguer; Maoz Fine; Christine Ferrier-Pagès

ABSTRACT Tropical corals are associated with a diverse community of dinitrogen (N2)-fixing prokaryotes (diazotrophs) providing the coral an additional source of bioavailable nitrogen (N) in oligotrophic waters. The overall activity of these diazotrophs changes depending on the current environmental conditions, but to what extent it affects the assimilation of diazotroph-derived N (DDN) by corals is still unknown. Here, in a series of 15N2 tracer experiments, we directly quantified DDN assimilation by scleractinian corals from the Red Sea exposed to different environmental conditions. We show that DDN assimilation strongly varied with the corals’ metabolic status or with phosphate availability in the water. The very autotrophic shallow-water (~5 m) corals showed low or no DDN assimilation, which significantly increased under elevated phosphate availability (3 µM). Corals that depended more on heterotrophy (i.e., bleached and deep-water [~45 m] corals) assimilated significantly more DDN, which contributed up to 15% of the corals’ N demand (compared to 1% in shallow corals). Furthermore, we demonstrate that a substantial part of the DDN assimilated by deep corals was likely obtained from heterotrophic feeding on fixed N compounds and/or diazotrophic cells in the mucus. Conversely, in shallow corals, the net release of mucus, rich in organic carbon compounds, likely enhanced diazotroph abundance and activity and thereby the release of fixed N to the pelagic and benthic reef community. Overall, our results suggest that DDN assimilation by corals varies according to the environmental conditions and is likely linked to the capacity of the coral to acquire nutrients from seawater. IMPORTANCE Tropical corals are associated with specialized bacteria (i.e., diazotrophs) able to transform dinitrogen (N2) gas into a bioavailable form of nitrogen, but how much of this diazotroph-derived nitrogen (DDN) is assimilated by corals under different environmental conditions is still unknown. Here, we used 15N2 labeling to trace the fate of DDN within the coral symbiosis. We show that DDN is assimilated by both the animal host and the endosymbiotic algae. In addition, the amount of assimilated DDN was significantly greater in mesophotic, bleached, or phosphorus-enriched corals than in surface corals, which almost did not take up this nitrogen form. DDN can thus be of particular importance for the nutrient budget of corals whenever they are limited by the availability of other forms of dissolved nutrients. Tropical corals are associated with specialized bacteria (i.e., diazotrophs) able to transform dinitrogen (N2) gas into a bioavailable form of nitrogen, but how much of this diazotroph-derived nitrogen (DDN) is assimilated by corals under different environmental conditions is still unknown. Here, we used 15N2 labeling to trace the fate of DDN within the coral symbiosis. We show that DDN is assimilated by both the animal host and the endosymbiotic algae. In addition, the amount of assimilated DDN was significantly greater in mesophotic, bleached, or phosphorus-enriched corals than in surface corals, which almost did not take up this nitrogen form. DDN can thus be of particular importance for the nutrient budget of corals whenever they are limited by the availability of other forms of dissolved nutrients.


The Journal of Experimental Biology | 2014

Nitrogen fixation in the mucus of Red Sea corals

Renaud Grover; Christine Ferrier-Pagès; Jean-François Maguer; Leïla Ezzat; Maoz Fine

Scleractinian corals are essential constituents of tropical reef ecological diversity. They live in close association with diazotrophs [dinitrogen (N2)-fixing microbes], which can fix high rates of N2. Whether corals benefit from this extrinsic nitrogen source is still under debate. Until now, N2 fixation rates have been indirectly estimated using the acetylene reduction assay, which does not permit assessment of the amount of nitrogen incorporated into the different compartments of the coral holobiont. In the present study, the 15N2 technique was applied for the first time on three Red Sea coral species. Significant 15N enrichment was measured in particles released by corals to the surrounding seawater. N2 fixation rates were species specific and as high as 1.6–2 ng N day−1 l−1. However, no significant enrichment was measured in the symbiotic dinoflagellates or the coral host tissues, suggesting that corals do not benefit from diazotrophic N2 fixation.


Scientific Reports | 2016

Limited phosphorus availability is the Achilles heel of tropical reef corals in a warming ocean

Leïla Ezzat; Jean-François Maguer; Renaud Grover; Christine Ferrier-Pagès

During the 20th century, seawater temperatures have significantly increased, leading to profound alterations in biogeochemical cycles and ecosystem processes. Elevated temperatures have also caused massive bleaching (symbiont/pigment loss) of autotrophic symbioses, such as in coral-dinoflagellate association. As symbionts provide most nutrients to the host, their expulsion during bleaching induces host starvation. However, with the exception of carbon, the nutritional impact of bleaching on corals is still unknown, due to the poorly understood requirements in inorganic nutrients during stress. We therefore assessed the uptake rates of nitrogen and phosphate by five coral species maintained under normal and thermal stress conditions. Our results showed that nitrogen acquisition rates were significantly reduced during thermal stress, while phosphorus uptake rates were significantly increased in most species, suggesting a key role of this nutrient. Additional experiments showed that during thermal stress, phosphorus was required to maintain symbiont density and photosynthetic rates, as well as to enhance the translocation and retention of carbon within the host tissue. These findings shed new light on the interactions existing between corals and inorganic nutrients during thermal stress, and highlight the importance of phosphorus for symbiont health.


Frontiers in Marine Science | 2017

Carbon and Nitrogen Acquisition in Shallow and Deep Holobionts of the Scleractinian Coral S. pistillata

Leïla Ezzat; Maoz Fine; Jean-François Maguer; Renaud Grover; Christine Ferrier-Pagès

Reef building corals can host different symbiont genotypes (clades), and form distinct holobionts in response to environmental changes. Studies on the functional significance of genetically different symbionts have focused on the thermal tolerance rather than on the nutritional significance. Here, we characterized the nitrogen and carbon assimilation rates, the allocation patterns of these nutrients within the symbiosis, and the trophic condition of two distinct holobionts of Stylophora pistillata: one associated with Symbiodinium clade A in shallow reefs and the other one associated with clade C in mesophotic reefs. The main findings are that: (1) clade C-symbionts have a competitive advantage for the acquisition of carbon at low irradiance compared to clade A-symbionts; (2) light is however the primary factor that determines the positive relationship between the amount of carbon fixed in photosynthesis by the symbionts and the amount of carbon translocated to the host; and (3) by contrast, the dominant Symbiodinium type preferentially determines a negative relationship between rates of coral feeding and nitrogen assimilation, although light still plays a relevant role in this relationship. Clade C-holobionts had indeed higher heterotrophic capacities, but lower inorganic nitrogen assimilation rates than clade A-holobionts, at all light levels. Broadly, our results show that the assimilation and translocation rates of inorganic carbon and nitrogen are clade and light-dependent. In addition, the capacity of S. pistillata to form mesophotic reefs in the Red Sea relies on its ability to select Symbiodinium clade C, as this symbiont type is more efficient to fix carbon at low light.


The ISME Journal | 2018

NanoSIMS single cell analyses reveal the contrasting nitrogen sources for small phytoplankton

Hugo Berthelot; Solange Duhamel; Stéphane L’Helguen; Jean-François Maguer; Seaver Wang; Ivona Cetinić; Nicolas Cassar

Nitrogen (N) is a limiting nutrient in vast regions of the world’s oceans, yet the sources of N available to various phytoplankton groups remain poorly understood. In this study, we investigated inorganic carbon (C) fixation rates and nitrate (NO3−), ammonium (NH4+) and urea uptake rates at the single cell level in photosynthetic pico-eukaryotes (PPE) and the cyanobacteria Prochlorococcus and Synechococcus. To that end, we used dual 15N and 13C-labeled incubation assays coupled to flow cytometry cell sorting and nanoSIMS analysis on samples collected in the North Pacific Subtropical Gyre (NPSG) and in the California Current System (CCS). Based on these analyses, we found that photosynthetic growth rates (based on C fixation) of PPE were higher in the CCS than in the NSPG, while the opposite was observed for Prochlorococcus. Reduced forms of N (NH4+ and urea) accounted for the majority of N acquisition for all the groups studied. NO3− represented a reduced fraction of total N uptake in all groups but was higher in PPE (17.4 ± 11.2% on average) than in Prochlorococcus and Synechococcus (4.5 ± 6.5 and 2.9 ± 2.1% on average, respectively). This may in part explain the contrasting biogeography of these picoplankton groups. Moreover, single cell analyses reveal that cell-to-cell heterogeneity within picoplankton groups was significantly greater for NO3− uptake than for C fixation and NH4+ uptake. We hypothesize that cellular heterogeneity in NO3− uptake within groups facilitates adaptation to the fluctuating availability of NO3− in the environment.


Limnology and Oceanography | 2002

Uptake of ammonium by the scleractinian coral Stylophora pistillata: Effect of feeding, light, and ammonium concentrations

Renaud Grover; Jean-François Maguer; Stephanie Reynaud-Vaganay; Christine Ferrier-Pagès


Limnology and Oceanography | 2003

Nitrate uptake in the scleractinian coral Stylophora pistillata

Renaud Grover; Jean-François Maguer; Denis Allemand; Christine Ferrier-Pagès

Collaboration


Dive into the Jean-François Maguer's collaboration.

Top Co-Authors

Avatar

Renaud Grover

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Stéphane L'Helguen

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Pierre Le Corre

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian Madec

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Matthieu Waeles

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Ricardo D. Riso

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Denis Allemand

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar

Leïla Ezzat

Hong Kong Marine Department

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge