Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jean-François Pinton is active.

Publication


Featured researches published by Jean-François Pinton.


PLOS ONE | 2010

Dynamics of person-to-person interactions from distributed RFID sensor networks.

Ciro Cattuto; Wouter Van den Broeck; Alain Barrat; Vittoria Colizza; Jean-François Pinton; Alessandro Vespignani

Background Digital networks, mobile devices, and the possibility of mining the ever-increasing amount of digital traces that we leave behind in our daily activities are changing the way we can approach the study of human and social interactions. Large-scale datasets, however, are mostly available for collective and statistical behaviors, at coarse granularities, while high-resolution data on person-to-person interactions are generally limited to relatively small groups of individuals. Here we present a scalable experimental framework for gathering real-time data resolving face-to-face social interactions with tunable spatial and temporal granularities. Methods and Findings We use active Radio Frequency Identification (RFID) devices that assess mutual proximity in a distributed fashion by exchanging low-power radio packets. We analyze the dynamics of person-to-person interaction networks obtained in three high-resolution experiments carried out at different orders of magnitude in community size. The data sets exhibit common statistical properties and lack of a characteristic time scale from 20 seconds to several hours. The association between the number of connections and their duration shows an interesting super-linear behavior, which indicates the possibility of defining super-connectors both in the number and intensity of connections. Conclusions Taking advantage of scalability and resolution, this experimental framework allows the monitoring of social interactions, uncovering similarities in the way individuals interact in different contexts, and identifying patterns of super-connector behavior in the community. These results could impact our understanding of all phenomena driven by face-to-face interactions, such as the spreading of transmissible infectious diseases and information.


Journal of Theoretical Biology | 2011

What's in a crowd? Analysis of face-to-face behavioral networks

Lorenzo Isella; Juliette Stehlé; Alain Barrat; Ciro Cattuto; Jean-François Pinton; Wouter Van den Broeck

The availability of new data sources on human mobility is opening new avenues for investigating the interplay of social networks, human mobility and dynamical processes such as epidemic spreading. Here we analyze data on the time-resolved face-to-face proximity of individuals in large-scale real-world scenarios. We compare two settings with very different properties, a scientific conference and a long-running museum exhibition. We track the behavioral networks of face-to-face proximity, and characterize them from both a static and a dynamic point of view, exposing differences and similarities. We use our data to investigate the dynamics of a susceptible-infected model for epidemic spreading that unfolds on the dynamical networks of human proximity. The spreading patterns are markedly different for the conference and the museum case, and they are strongly impacted by the causal structure of the network data. A deeper study of the spreading paths shows that the mere knowledge of static aggregated networks would lead to erroneous conclusions about the transmission paths on the dynamical networks.


PLOS ONE | 2011

High-Resolution Measurements of Face-to-Face Contact Patterns in a Primary School

Juliette Stehlé; Nicolas Voirin; Alain Barrat; Ciro Cattuto; Lorenzo Isella; Jean-François Pinton; Marco Quaggiotto; Wouter Van den Broeck; Corinne Régis; Bruno Lina; Philippe Vanhems

Background Little quantitative information is available on the mixing patterns of children in school environments. Describing and understanding contacts between children at school would help quantify the transmission opportunities of respiratory infections and identify situations within schools where the risk of transmission is higher. We report on measurements carried out in a French school (6–12 years children), where we collected data on the time-resolved face-to-face proximity of children and teachers using a proximity-sensing infrastructure based on radio frequency identification devices. Methods and Findings Data on face-to-face interactions were collected on Thursday, October 1st and Friday, October 2nd 2009. We recorded 77,602 contact events between 242 individuals (232 children and 10 teachers). In this setting, each child has on average 323 contacts per day with 47 other children, leading to an average daily interaction time of 176 minutes. Most contacts are brief, but long contacts are also observed. Contacts occur mostly within each class, and each child spends on average three times more time in contact with classmates than with children of other classes. We describe the temporal evolution of the contact network and the trajectories followed by the children in the school, which constrain the contact patterns. We determine an exposure matrix aimed at informing mathematical models. This matrix exhibits a class and age structure which is very different from the homogeneous mixing hypothesis. Conclusions We report on important properties of the contact patterns between school children that are relevant for modeling the propagation of diseases and for evaluating control measures. We discuss public health implications related to the management of schools in case of epidemics and pandemics. Our results can help define a prioritization of control measures based on preventive measures, case isolation, classes and school closures, that could reduce the disruption to education during epidemics.


Physical Review Letters | 2001

Measurement of Lagrangian Velocity in Fully Developed Turbulence

Nicolas Mordant; Pascal Metz; Olivier Michel; Jean-François Pinton

We have developed a new experimental technique to measure the Lagrangian velocity of tracer particles in a turbulent flow, based on ultrasonic Doppler tracking. This method yields a direct access to the velocity of a single particle at a turbulent Reynolds number R(lambda) = 740, with two decades of time resolution, below the Lagrangian correlation time. We observe that the Lagrangian velocity spectrum has a Lorentzian form E(L)(omega) = u(2)(rms)T(L)/[1+(T(L)omega)(2)], in agreement with a Kolmogorov-like scaling in the inertial range. The probability density functions of the velocity time increments display an intermittency which is more pronounced than that of the corresponding Eulerian spatial increments.


Physical Review Letters | 2007

Generation of a magnetic field by dynamo action in a turbulent flow of liquid sodium

Romain Monchaux; Michael Berhanu; Mickaël Bourgoin; Marc Moulin; P. Odier; Jean-François Pinton; S. Fauve; Nicolas Mordant; François Pétrélis; Arnaud Chiffaudel; François Daviaud; Bérengère Dubrulle; Cécile Gasquet; Louis Marié; Florent Ravelet

We report the observation of dynamo action in the von Kármán sodium experiment, i.e., the generation of a magnetic field by a strongly turbulent swirling flow of liquid sodium. Both mean and fluctuating parts of the field are studied. The dynamo threshold corresponds to a magnetic Reynolds number R(m) approximately 30. A mean magnetic field of the order of 40 G is observed 30% above threshold at the flow lateral boundary. The rms fluctuations are larger than the corresponding mean value for two of the components. The scaling of the mean square magnetic field is compared to a prediction previously made for high Reynolds number flows.


BMC Medicine | 2011

Simulation of an SEIR infectious disease model on the dynamic contact network of conference attendees

Juliette Stehlé; Nicolas Voirin; Alain Barrat; Ciro Cattuto; Vittoria Colizza; Lorenzo Isella; Corinne Régis; Jean-François Pinton; Nagham Khanafer; Wouter Van den Broeck; Philippe Vanhems

BackgroundThe spread of infectious diseases crucially depends on the pattern of contacts between individuals. Knowledge of these patterns is thus essential to inform models and computational efforts. However, there are few empirical studies available that provide estimates of the number and duration of contacts between social groups. Moreover, their space and time resolutions are limited, so that data are not explicit at the person-to-person level, and the dynamic nature of the contacts is disregarded. In this study, we aimed to assess the role of data-driven dynamic contact patterns between individuals, and in particular of their temporal aspects, in shaping the spread of a simulated epidemic in the population.MethodsWe considered high-resolution data about face-to-face interactions between the attendees at a conference, obtained from the deployment of an infrastructure based on radiofrequency identification (RFID) devices that assessed mutual face-to-face proximity. The spread of epidemics along these interactions was simulated using an SEIR (Susceptible, Exposed, Infectious, Recovered) model, using both the dynamic network of contacts defined by the collected data, and two aggregated versions of such networks, to assess the role of the data temporal aspects.ResultsWe show that, on the timescales considered, an aggregated network taking into account the daily duration of contacts is a good approximation to the full resolution network, whereas a homogeneous representation that retains only the topology of the contact network fails to reproduce the size of the epidemic.ConclusionsThese results have important implications for understanding the level of detail needed to correctly inform computational models for the study and management of real epidemics.Please see related article BMC Medicine, 2011, 9:88


European Physical Journal B | 2000

Velocity measurement of a settling sphere

N. Mordant; Jean-François Pinton

Abstract:We study experimentally the motion of a solid sphere settling under gravity in a fluid at rest. The particle velocity is measured with a new acoustic method. Variations of the sphere size and density allow measurements at Reynolds numbers, based on limit velocity, between 40 and 7 000. At all Reynolds numbers, our observations are consistent with the presence of a memory-dependent force acting on the particle. At short times it has a t-1/2 behaviour as predicted by the unsteady Stokes equations and as observed in numerical simulations. At long times, the decay of the memory (Basset) force is better fitted by an exponential behaviour. Comparison of the dynamics of spheres of different densities for the same Reynolds number show that the density is an important control parameter. Light spheres show transitory oscillations at Re∼ 400, but reach a constant limit speed.


Nature | 1998

Universality of rare fluctuations in turbulence and critical phenomena

Steven T. Bramwell; P. C. W. Holdsworth; Jean-François Pinton

A statistical treatment of three-dimensional turbulent flow continues to pose a challenge to theorists,. One suggestion invokes an analogy with equilibrium phase transitions. Here we approach this idea experimentally, presenting evidence of a strong analogy between the statistical behaviour of a confined turbulent flow andthat of a model of the critical behaviour of a ferromagnet. Both systems experience large fluctuations limited only by the system size. We find that the power consumption measured in turbulent-flow experiments and the magnetization at the critical point of the ferromagnet have probability distributions of the same functional form, irrespective of Reynolds number on the one hand and system size on the other. The distributions both have non-gaussian tails that characterize the large-amplitude fluctuations. In this region, the scaled distributions for the two systems collapse onto a single universal curve over at least four orders of magnitude. This suggests a basic similarity in the finite-size corrections to the fluctuation statistics in the limit of infinite system size (for the magnetic system) or infinite Reynolds number (for turbulent flow).


EPL | 2007

Magnetic field reversals in an experimental turbulent dynamo

Michael Berhanu; Romain Monchaux; S. Fauve; Nicolas Mordant; François Pétrélis; Arnaud Chiffaudel; François Daviaud; Bérengère Dubrulle; Louis Marié; Florent Ravelet; Mickaël Bourgoin; P. Odier; Jean-François Pinton

We report the first experimental observation of reversals of a dynamo field generated in a laboratory experiment based on a turbulent flow of liquid sodium. The magnetic field randomly switches between two symmetric solutions B and -B. We observe a hierarchy of time scales similar to the Earths magnetic field: the duration of the steady phases is widely distributed, but is always much longer than the time needed to switch polarity. In addition to reversals we report excursions. Both coincide with minima of the mechanical power driving the flow. Small changes in the flow driving parameters also reveal a large variety of dynamo regimes.


Physical Review Letters | 2000

Universal fluctuations in correlated systems

Steven T. Bramwell; Kim Christensen; Jean-Yves Fortin; P. C. W. Holdsworth; Henrik Jeldtoft Jensen; Stefano Lise; Juan M. López; Mario Nicodemi; Jean-François Pinton; M. Sellitto

The probability density function (PDF) of a global measure in a large class of highly correlated systems has been suggested to be of the same functional form. Here, we identify the analytical form of the PDF of one such measure, the order parameter in the low temperature phase of the 2D XY model. We demonstrate that this function describes the fluctuations of global quantities in other correlated equilibrium and nonequilibrium systems. These include a coupled rotor model, Ising and percolation models, models of forest fires, sandpiles, avalanches, and granular media in a self-organized critical state. We discuss the relationship with both Gaussian and extremal statistics.

Collaboration


Dive into the Jean-François Pinton's collaboration.

Top Co-Authors

Avatar

Mickaël Bourgoin

École normale supérieure de Lyon

View shared research outputs
Top Co-Authors

Avatar

P. Odier

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Nicolas Plihon

École normale supérieure de Lyon

View shared research outputs
Top Co-Authors

Avatar

S. Fauve

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar

François Daviaud

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gautier Verhille

École normale supérieure de Lyon

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arnaud Chiffaudel

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Bérengère Dubrulle

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge