Jean Gautier
Columbia University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jean Gautier.
Nature | 2007
David Dominguez-Sola; Carol Y. Ying; Carla Grandori; Luca Ruggiero; Brenden Chen; Muyang Li; Denise A. Galloway; Wei Gu; Jean Gautier; Riccardo Dalla-Favera
The c-Myc proto-oncogene encodes a transcription factor that is essential for cell growth and proliferation and is broadly implicated in tumorigenesis. However, the biological functions required by c-Myc to induce oncogenesis remain elusive. Here we show that c-Myc has a direct role in the control of DNA replication. c-Myc interacts with the pre-replicative complex and localizes to early sites of DNA synthesis. Depletion of c-Myc from mammalian (human and mouse) cells as well as from Xenopus cell-free extracts, which are devoid of RNA transcription, demonstrates a non-transcriptional role for c-Myc in the initiation of DNA replication. Overexpression of c-Myc causes increased replication origin activity with subsequent DNA damage and checkpoint activation. These findings identify a critical function of c-Myc in DNA replication and suggest a novel mechanism for its normal and oncogenic functions.
Nature Cell Biology | 2004
David Shechter; Vincenzo Costanzo; Jean Gautier
Timing of DNA replication initiation is dependent on S-phase-promoting kinase (SPK) activity at discrete origins and the simultaneous function of many replicons. DNA damage prevents origin firing through the ATM- and ATR-dependent inhibition of Cdk2 and Cdc7 SPKs. Here, we establish that modulation of ATM- and ATR-signalling pathways controls origin firing in the absence of DNA damage. Inhibition of ATM and ATR with caffeine or specific neutralizing antibodies, or upregulation of Cdk2 or Cdc7, promoted rapid and synchronous origin firing; conversely, inhibition of Cdc25A slowed DNA replication. Cdk2 was in equilibrium between active and inactive states, and the concentration of replication protein A (RPA)-bound single-stranded DNA (ssDNA) correlated with Chk1 activation and inhibition of origin firing. Furthermore, ATM was transiently activated during ongoing replication. We propose that ATR and ATM regulate SPK activity through a feedback mechanism originating at active replicons. Our observations establish that ATM- and ATR-signalling pathways operate during an unperturbed cell cycle to regulate initiation and progression of DNA synthesis, and are therefore poised to halt replication in the presence of DNA damage.
Molecular Cell | 2003
Vincenzo Costanzo; David Shechter; Patrick J. Lupardus; Karlene A. Cimprich; Max E. Gottesman; Jean Gautier
We have analyzed how single-strand DNA gaps affect DNA replication in Xenopus egg extracts. DNA lesions generated by etoposide, a DNA topoisomerase II inhibitor, or by exonuclease treatment activate a DNA damage checkpoint that blocks initiation of plasmid and chromosomal DNA replication. The checkpoint is abrogated by caffeine and requires ATR, but not ATM, protein kinase. The block to DNA synthesis is due to inhibition of Cdc7/Dbf4 protein kinase activity and the subsequent failure of Cdc45 to bind to chromatin. The checkpoint does not require pre-RC assembly but requires loading of the single-strand binding protein, RPA, on chromatin. This is the biochemical demonstration of a DNA damage checkpoint that targets Cdc7/Dbf4 protein kinase.
Nature Structural & Molecular Biology | 2009
Emilie Rass; Anastazja Grabarz; Isabelle Plo; Jean Gautier; Pascale Bertrand; Bernard S. Lopez
Here we have used an intrachromosomal substrate to monitor the end joining of distant ends, which leads to DNA rearrangements in mammalian cells. We show that silencing Mre11 reduces the efficiency of nonhomologous end joining (NHEJ), affecting both the canonical and alternative pathways, partly in a manner that is independent of the ataxia-telangiectasia mutated kinase (ATM). Silencing of Rad50 or CtIP decreases end-joining efficiency in the same pathway as Mre11. In cells defective for Xrcc4, the MRE11–RAD50–NBS1 (MRN) complex inhibitor MIRIN decreases end-joining frequencies, demonstrating a role for MRN in alternative NHEJ. Consistently, MIRIN sensitizes both complemented and NHEJ-defective cells to ionizing radiation. Conversely, overexpression of Mre11 stimulates the resection of single-stranded DNA and increases alternative end joining, through a mechanism that requires Mre11s nuclease activity, but in an ATM-independent manner. These data demonstrate that, in addition to its role in ATM activation, Mre11 can favor alternative NHEJ through its nuclease activity.
Nature Chemical Biology | 2008
Aude Dupré; Louise Boyer-Chatenet; Rose M Sattler; Ami P. Modi; Ji-Hoon Lee; Matthew L. Nicolette; Levy Kopelovich; Maria Jasin; Richard Baer; Tanya T. Paull; Jean Gautier
The MRN (Mre11-Rad50-Nbs1)-ATM (ataxia-telangiectasia mutated) pathway is essential for sensing and signaling from DNA double-strand breaks. The MRN complex acts as a DNA damage sensor, maintains genome stability during DNA replication, promotes homology-dependent DNA repair and activates ATM. MRN is essential for cell viability, which has limited functional studies of the complex. Small-molecule inhibitors of MRN could circumvent this experimental limitation and could also be used as cellular radio- and chemosensitization compounds. Using cell-free systems that recapitulate faithfully the MRN-ATM signaling pathway, we designed a forward chemical genetic screen to identify inhibitors of the pathway, and we isolated 6-(4-hydroxyphenyl)-2-thioxo-2,3-dihydro-4(1H)-pyrimidinone (mirin, 1) as an inhibitor of MRN. Mirin prevents MRN-dependent activation of ATM without affecting ATM protein kinase activity, and it inhibits Mre11-associated exonuclease activity. Consistent with its ability to target the MRN complex, mirin abolishes the G2/M checkpoint and homology-dependent repair in mammalian cells.
Mechanisms of Development | 1997
Carmel Hensey; Jean Gautier
Recent work identified an apoptotic program in gastrulation stage Xenopus embryos (Anderson, J.A., Lewellyn, A.L., Maller, J.L., 1997. Mol. Biol. Cell 8, 1195-1206; Stack, J.H., Newport, J.W., 1997. Development 124, 3185-3195). Here, we characterize in detail this maternal cell death program, which is set up at fertilization and abruptly activated at the onset of gastrulation, following DNA damage or treatment of embryos with inhibitors of transcription, translation, or replication, between the time of fertilization and the midblastula transition (MBT). This apoptotic pathway is activated under tightly regulated developmental control(s): if the same treatments are applied after the MBT the apoptotic response is abrogated. Embryos displayed many characteristic apoptotic features, including DNA fragmentation, caspase activation, and embryonic death was blocked in vivo by the ectopic expression of Bcl-2, or injection of the caspase-3 inhibitor z-DEVD-fmk. The precise timing and the execution of this maternal cell death program is set at fertilization and does not depend on the type of stress applied, on cell cycle progression, or on de novo protein synthesis. This maternal developmental program might palliate the lack of cell cycle checkpoints in the pre-MBT embryo.
Molecular Cell | 2000
Vincenzo Costanzo; Kirsten Robertson; Carol Y. Ying; Edward Kim; Enrico V. Avvedimento; Max E. Gottesman; Domenico Grieco; Jean Gautier
Cell cycle checkpoints lead to the inhibition of cell cycle progression following DNA damage. A cell-free system derived from Xenopus eggs has been established that reconstitutes the checkpoint pathway inhibiting DNA replication initiation. DNA containing double-strand breaks inhibits replication initiation in a dose-dependent manner. Upon checkpoint activation, a prereplicative complex is assembled that contains ORC, Cdc6, Cdc7, and MCM proteins but lacks Cdc45. The checkpoint is ATM dependent. Cdk2/CyclinE acts downstream of ATM and is downregulated by Cdk2 phosphorylation on tyrosine 15. Cdk2AF/CyclinE is refractory to checkpoint signaling, and Cdc25A overrides the checkpoint and restores DNA replication. This report provides the description of a DNA damage checkpoint pathway that prevents the onset of S phase independently of the transcriptional function of p53 in a vertebrate organism.
Nature | 2008
Derek J. Richard; Emma Bolderson; Liza Cubeddu; Ross I. M. Wadsworth; Kienan Savage; Girdhar G. Sharma; Matthew L. Nicolette; Sergie Tsvetanov; Michael J. McIlwraith; Raj K. Pandita; Shunichi Takeda; Ronald T. Hay; Jean Gautier; Stephen C. West; Tanya T. Paull; Tej K. Pandita; Malcolm F. White; Kum Kum Khanna
Single-strand DNA (ssDNA)-binding proteins (SSBs) are ubiquitous and essential for a wide variety of DNA metabolic processes, including DNA replication, recombination, DNA damage detection and repair. SSBs have multiple roles in binding and sequestering ssDNA, detecting DNA damage, stimulating nucleases, helicases and strand-exchange proteins, activating transcription and mediating protein–protein interactions. In eukaryotes, the major SSB, replication protein A (RPA), is a heterotrimer. Here we describe a second human SSB (hSSB1), with a domain organization closer to the archaeal SSB than to RPA. Ataxia telangiectasia mutated (ATM) kinase phosphorylates hSSB1 in response to DNA double-strand breaks (DSBs). This phosphorylation event is required for DNA damage-induced stabilization of hSSB1. Upon induction of DNA damage, hSSB1 accumulates in the nucleus and forms distinct foci independent of cell-cycle phase. These foci co-localize with other known repair proteins. In contrast to RPA, hSSB1 does not localize to replication foci in S-phase cells and hSSB1 deficiency does not influence S-phase progression. Depletion of hSSB1 abrogates the cellular response to DSBs, including activation of ATM and phosphorylation of ATM targets after ionizing radiation. Cells deficient in hSSB1 exhibit increased radiosensitivity, defective checkpoint activation and enhanced genomic instability coupled with a diminished capacity for DNA repair. These findings establish that hSSB1 influences diverse endpoints in the cellular DNA damage response.
Nature Structural & Molecular Biology | 2006
Aude Dupré; Louise Boyer-Chatenet; Jean Gautier
DNA double-strand breaks (DSBs) trigger activation of the ATM protein kinase, which coordinates cell-cycle arrest, DNA repair and apoptosis. We propose that ATM activation by DSBs occurs in two steps. First, dimeric ATM is recruited to damaged DNA and dissociates into monomers. The Mre11–Rad50–Nbs1 complex (MRN) facilitates this process by tethering DNA, thereby increasing the local concentration of damaged DNA. Notably, increasing the concentration of damaged DNA bypasses the requirement for MRN, and ATM monomers generated in the absence of MRN are not phosphorylated on Ser1981. Second, the ATM-binding domain of Nbs1 is required and sufficient to convert unphosphorylated ATM monomers into enzymatically active monomers in the absence of DNA. This model clarifies the mechanism of ATM activation in normal cells and explains the phenotype of cells from patients with ataxia telangiectasia–like disorder and Nijmegen breakage syndrome.
The EMBO Journal | 1991
Jean Gautier; James L. Maller
Using a polyclonal antibody raised against B2 cyclin from Xenopus laevis, we show that prophase‐arrested Xenopus oocytes contain a stockpile of cyclin B2 protein. During progesterone‐induced maturation, an increase in the synthesis of cyclin B2 is observed, although Western blotting experiments show that this new synthesis does not significantly increase the mass of cyclin over the maternal stockpile. In the oocyte cyclin B2 is already present in two forms which differ in the extent of phosphorylation, but the phosphorylated form becomes predominant as oocytes progress towards germinal vesicle breakdown (GVBD), coincident with cdc2 protein kinase activation. These two events do not depend upon formation of a new complex between cyclin and cdc2 protein kinase, since these two proteins are already found associated in resting oocytes, prior to activation of the kinase.