Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jean Grizard is active.

Publication


Featured researches published by Jean Grizard.


The FASEB Journal | 2004

Impaired anabolic response of muscle protein synthesis is associated with S6K1 dysregulation in elderly humans

Christelle Guillet; Magali Prod'homme; Michèle Balage; Pierre Gachon; Christophe Giraudet; Liliane Morin; Jean Grizard; Yves Boirie

Age‐related loss of muscle protein may involve a decreased response to anabolic factors of muscle protein synthesis through dysregulation of translation factors. To verify this hypothesis, we simultaneously investigated muscle protein synthesis and expression of some factors implicated in insulin signal transduction during hyperinsulinemia and hyperaminoacidemia in 6 young (25±1 year; mean±SEM) and 8 elderly subjects (72±2 year). Incorporation of L‐[1‐13C] leucine in muscle proteins (fractional synthesis rate, FSR) was measured in vastus lateralis, before and during a euglycemic hyperinsulinemic hyperaminoacidemic clamp, together with Western blot analysis of protein kinase B (PKB), mTOR, 4E‐BP1, and S6K1 phosphorylation. In basal state, muscle protein FSR was reduced in elderly in comparison with young subjects (0.061±0.004% per hour) vs 0.082±0.010% per hour, elderly vs. young, P<0.05). During clamp, muscle protein FSR was stimulated in young (0.119±0.006% per hour; P<0.05), but this response was significantly lower in elderly subjects (0.084±0.005% per hour, P<0.05 vs young subjects). Phosphorylation of PKB, mTOR, and 4E‐BP1 were similarly increased by insulin and amino acid in both groups, except for S6K1 phosphorylation, which was not stimulated in elderly subjects. In conclusion, 1) response of muscle protein synthesis to insulin and amino acid is impaired in elderly humans; 2) a defect in S6K1 pathway activation may be responsible for this alteration. This modification is a mechanistic basis of sarcopenia development during aging.


The Journal of Physiology | 2006

Leucine supplementation improves muscle protein synthesis in elderly men independently of hyperaminoacidaemia

Isabelle Rieu; Michèle Balage; Claire Sornet; Christophe Giraudet; Estelle Pujos; Jean Grizard; Laurent Mosoni; Dominique Dardevet

The present study was designed to assess the effects of dietary leucine supplementation on muscle protein synthesis and whole body protein kinetics in elderly individuals. Twenty healthy male subjects (70 ± 1 years) were studied before and after continuous ingestion of a complete balanced diet supplemented or not with leucine. A primed (3.6 μmol kg−1) constant infusion (0.06 μmol kg−1 min−1) of l‐[1‐13C]phenylalanine was used to determine whole body phenylalanine kinetics as well as fractional synthesis rate (FSR) in the myofibrillar fraction of muscle proteins from vastus lateralis biopsies. Whole body protein kinetics were not affected by leucine supplementation. In contrast, muscle FSR, measured over the 5‐h period of feeding, was significantly greater in the volunteers given the leucine‐supplemented meals compared with the control group (0.083 ± 0.008 versus 0.053 ± 0.009% h−1, respectively, P < 0.05). This effect was due only to increased leucine availability because only plasma free leucine concentration significantly differed between the control and leucine‐supplemented groups. We conclude that leucine supplementation during feeding improves muscle protein synthesis in the elderly independently of an overall increase of other amino acids. Whether increasing leucine intake in old people may limit muscle protein loss during ageing remains to be determined.


The Journal of Physiology | 2005

A leucine-supplemented diet restores the defective postprandial inhibition of proteasome-dependent proteolysis in aged rat skeletal muscle

Lydie Combaret; Dominique Dardevet; Isabelle Rieu; Marie-Noëlle Pouch; Daniel Béchet; Daniel Taillandier; Jean Grizard; Didier Attaix

We tested the hypothesis that skeletal muscle ubiquitin–proteasome‐dependent proteolysis is dysregulated in ageing in response to feeding. In Experiment 1 we measured rates of proteasome‐dependent proteolysis in incubated muscles from 8‐ and 22‐month‐old rats, proteasome activities, and rates of ubiquitination, in the postprandial and postabsorptive states. Peptidase activities of the proteasome decreased in the postabsorptive state in 22‐month‐old rats compared with 8‐month‐old animals, while the rate of ubiquitination was not altered. Furthermore, the down‐regulation of in vitro proteasome‐dependent proteolysis that prevailed in the postprandial state in 8‐month‐old rats was defective in 22‐month‐old rats. Next, we tested the hypothesis that the ingestion of a 5% leucine‐supplemented diet may correct this defect. Leucine supplementation restored the postprandial inhibition of in vitro proteasome‐dependent proteolysis in 22‐month‐old animals, by down‐regulating both rates of ubiquitination and proteasome activities. In Experiment 2, we verified that dietary leucine supplementation had long‐lasting effects by comparing 8‐ and 22‐month‐old rats that were fed either a leucine‐supplemented diet or an alanine‐supplemented diet for 10 days. The inhibited in vitro proteolysis was maintained in the postprandial state in the 22‐month‐old rats fed the leucine‐supplemented diet. Moreover, elevated mRNA levels for ubiquitin, 14‐kDa ubiquitin‐conjugating enzyme E2, and C2 and X subunits of the 20S proteasome that were characteristic of aged muscle were totally suppressed in 22‐month‐old animals chronically fed the leucine‐supplemented diet, demonstrating an in vivo effect. Thus the defective postprandial down‐regulation of in vitro proteasome‐dependent proteolysis in 22‐month‐old rats was restored in animals chronically fed a leucine‐supplemented diet.


Biochemical Journal | 2004

Glucocorticoids regulate mRNA levels for subunits of the 19 S regulatory complex of the 26 S proteasome in fast-twitch skeletal muscles.

Lydie Combaret; Daniel Taillandier; Dominique Dardevet; Daniel Béchet; Cécile Rallière; Agnès Claustre; Jean Grizard; Didier Attaix

Circulating levels of glucocorticoids are increased in many traumatic and muscle-wasting conditions that include insulin-dependent diabetes, acidosis, infection, and starvation. On the basis of indirect findings, it appeared that these catabolic hormones are required to stimulate Ub (ubiquitin)-proteasome-dependent proteolysis in skeletal muscles in such conditions. The present studies were performed to provide conclusive evidence for an activation of Ub-proteasome-dependent proteolysis after glucocorticoid treatment. In atrophying fast-twitch muscles from rats treated with dexamethasone for 6 days, compared with pair-fed controls, we found (i) increased MG132-inhibitable proteasome-dependent proteolysis, (ii) an enhanced rate of substrate ubiquitination, (iii) increased chymotrypsin-like proteasomal activity of the proteasome, and (iv) a co-ordinate increase in the mRNA expression of several ATPase (S4, S6, S7 and S8) and non-ATPase (S1, S5a and S14) subunits of the 19 S regulatory complex, which regulates the peptidase and the proteolytic activities of the 26 S proteasome. These studies provide conclusive evidence that glucocorticoids activate Ub-proteasome-dependent proteolysis and the first in vivo evidence for a hormonal regulation of the expression of subunits of the 19 S complex. The results suggest that adaptations in gene expression of regulatory subunits of the 19 S complex by glucocorticoids are crucial in the regulation of the 26 S muscle proteasome.


British Journal of Nutrition | 1998

Effect of glucocorticoid excess on skeletal muscle and heart protein synthesis in adult and old rats

Isabelle Savary; Elisabeth Debras; Dominique Dardevet; Claire Sornet; Pierre Capitan; J. Prugnaud; Philippe Patureau Mirand; Jean Grizard

This study was carried out to analyse glucocorticoid-induced muscle wasting and subsequent recovery in adult (6-8 months) and old (18-24 months) rats because the increased incidence of various disease states results in hypersecretion of glucocorticoids in ageing. Adult and old rats received dexamethasone in their drinking water for 5 or 6 d and were then allowed to recover for 3 or 7 d. As dexamethasone decreased food intake, all groups were pair-fed to dexamethasone-treated old rats (i.e. the group that had the lowest food intake). At the end of the treatment, adult and old rats showed significant increases in blood glucose and plasma insulin concentrations. This increase disappeared during the recovery period. Protein synthesis of different muscles was assessed in vivo by a flooding dose of [13C]valine injected subcutaneously 50 min before slaughter. Dexamethasone induced a significant decrease in protein synthesis in fast-twitch glycolytic and oxidative glycolytic muscles (gastrocnemius, tibialis anterior, extensor digitorum longus). The treatment affected mostly ribosomal efficiency. Adult dexamethasone-treated rats showed an increase in protein synthesis compared with their pair-fed controls during the recovery period whereas old rats did not. Dexamethasone also significantly decreased protein synthesis in the predominantly oxidative soleus muscle but only in old rats, and increased protein synthesis in the heart of adult but not of old rats. Thus, in skeletal muscle, the catabolic effect of dexamethasone is maintained or amplified during ageing whereas the anabolic effect in heart is depressed. These results are consistent with muscle atrophy occurring with ageing.


The Journal of Physiology | 2005

Differential effects of insulin and dietary amino acids on muscle protein synthesis in adult and old rats

Magali Prod'homme; Michèle Balage; Elisabeth Debras; Marie-Chantal Farges; Scott Kimball; Leonard S. Jefferson; Jean Grizard

The potential roles of insulin and dietary amino acids in the regulation of skeletal muscle protein synthesis were examined in adult and old rats. Animals were fed over 1 h with either a 25% or a 0% amino acid/protein meal. In each nutritional condition, postprandial insulin secretion was either maintained or blocked with diazoxide injections. Protein synthesis in gastrocnemius and soleus muscles was assessed in vivo using the flooding dose method. Insulin suppression decreased protein synthesis in both muscles irrespective of the nutritional condition and age of the rats. Moreover, reduced insulinaemia was associated with 4E‐BP1 dephosphorylation, enhanced assembly of the 4E‐BP1−eIF4E inactive complex and hypophosphorylation of eIF4E, p70S6k and protein kinase B, key intermediates in the regulation of translation initiation and protein synthesis. Old rats did not differ from adult rats. The lack of amino acids in the meal of insulin‐suppressed rats did not result in any additional decrease in protein synthesis. In the presence of insulin secretion, dietary amino acid suppression significantly decreased gastrocnemius protein synthesis in adult but not in old rats. Amino acid suppression was associated with reduced phosphorylation of 4E‐BP1 and p70S6k in adults. Along with protein synthesis, only the inhibition of p70S6k phosphorylation was abolished in old rats. We concluded that insulin is required for the regulation of muscle protein synthesis irrespective of age and that the effect of dietary amino acids is blunted in old rats.


American Journal of Physiology-endocrinology and Metabolism | 1998

Differential regulation of skeletal muscle protein turnover by insulin and IGF-I after bacteremia

Thomas C. Vary; Dominique Dardevet; Jean Grizard; Laure Voisin; Caroline Buffière; Phillipe Denis; Denis Breuille; Christiane Obled

Skeletal muscle catabolism is a characteristic metabolic response to sepsis. We investigated the ability of physiological insulin (2 nM) or insulin-like growth factor I (IGF-I, 10 nM) concentrations to modify protein metabolism during incubation of epitrochlearis 2, 6, or 15 days after injection of live Escherichia coli. On days 2 and 6 postinfection, skeletal muscle exhibited an exacerbated negative protein balance resulting from both an inhibition in protein synthesis (25%) and an enhanced proteolysis (90%) compared with controls. By day 15 postinfection, protein balance in infected rats was significantly improved compared with either day 2 or 6. At this time, protein synthesis was augmented and protein degradation was decreased in infected rats relative to day 6. Insulin or IGF-I stimulated protein synthesis in muscles from septic and control rats in vitro to the same extent at each time point examined. The ability of insulin or IGF-I to limit protein degradation was severely blunted 48 h after infection. On day 6 postinfection, the effect of insulin or IGF-I to inhibit proteolysis was more pronounced than on day 2. Incubation with IGF-I limited proteolysis to a greater extent than insulin on both days in infected but not control rats. By day 15, insulin diminished proteolysis to the same extent as in controls. The results suggest that injection of bacteria causes fundamental derangements in protein metabolism that persist for days after infection.


Journal of Dairy Research | 1992

Effect of insulin in conjunction with glucose, amino acids and potassium on net metabolism of glucose and amino acids in the goat mammary gland

Sophie Tesseraud; Jean Grizard; Boguslaw Makarski; Elisabeth Debras; G. Bayle; C. Champredon

The hyperinsulinaemic euglycaemic insulin clamp technique was used to study the effect of insulin on the arterio-venous concentration differences of glucose and amino acids across the mammary gland in dairy goats. Insulin was given in conjunction with K to prevent insulin hypokalaemia. Appropriate amino acid infusion was used to blunt insulin-induced hypoaminoacidaemia or to create hyperaminoacidaemia and maintain this state under insulin treatment. Hyperaminoacidaemia alone only stimulated mammary leucine uptake but did not significantly modify the net metabolism of other amino acids and glucose. Insulin infusion at physiological level in conjunction with glucose, KCl-NaCl and amino acids failed to alter mammary uptake of glucose and essential amino acids; occasional increase in arginine extraction and decrease in tyrosine extraction were exceptions. Thus these new experimental conditions did not reveal any galactopoietic effect of insulin.


Biochimica et Biophysica Acta | 1986

Assessment of in vivo protein synthesis in lamb tissues with [3H]valine flooding doses

Didier Attaix; Abolghasem Manghebati; Jean Grizard; Maurice Arnal

Week-old lambs received an intravenous injection of 4.3, 8.5, 12.8 or 17.1 mmol [3H]valine/5 kg body weight, i.e., 3.6-14.4-times the whole-body free valine content. To ensure that protein synthesis measurements in lambs are reliable within a 30-min period, these large amounts of valine must account for at least around 11-times the total free pool of valine. This amounted to 12.8 mmol valine/5 kg body weight. There were no significant variations in plasma insulin and plasma glucagon levels 5, 13 and 30 min after the injection of so much valine. The fractional rates of protein synthesis were determined in tissues of animals receiving either 12.8 or 17.1 mmol valine/5 kg body weight. The rates of protein synthesis in the jejunum (87.5%/day), liver (106.6%/day) and tensor fasciae latae muscle (18.8%/day) of lambs injected with the 12.8 mmol [3H]valine flooding dose, were in the range of data obtained in immature rats. Increasing the flooding amount of valine up to 17.1 mmol/5 kg body weight did not significantly alter protein synthesis rates in the jejunum, liver or skeletal muscle. This suggested that both the flooding-dose method in itself and valine had no effect on in vivo protein synthesis.


British Journal of Nutrition | 1991

Influence of low- and high-protein diets on insulin and insulin-like growth factor-1 binding to skeletal muscle and liver in the growing rat

Dominique Dardevet; M. Manin; Michèle Balage; Claire Sornet; Jean Grizard

The influence of protein content of the diet on the plasma concentrations and binding to skeletal muscle and liver of insulin and insulin-like growth factor-1 (IGF-1), was studied in growing rats. Animals with a starting body-weight of 80 g received for an 11 d period isoenergetic diets containing (g/kg dry matter) 155 protein as controls (MP), or 55 (LP) or 300 (HP) protein. Food was offered as six equal meals/d. Daily food intakes provided adequate amounts of energy. Total plasma IGF-1 increased linearly as a function of dietary protein intake. Plasma insulin was lower in the LP than in the MP and HP groups. Hormone binding was studied in wheat-germ agglutinin (WGA) partially purified skeletal muscle receptor preparations. Each 125I-labelled hormone binding was competed for by increasing amounts of homologous and heterologous unlabelled hormone; this displacement needed lower concentrations of homologous than heterologous hormone. When compared with MP-diet feeding, the LP diet resulted in an increased ligand concentration for half-maximal binding. In addition the specific 125I-labelled insulin and 125I-labelled IGF-1 binding increased at all hormone concentrations and, as revealed by Scatchard analysis, the hormone binding capacity also rose (only significant for low-affinity insulin receptors and high-affinity IGF-1 receptors). The HP diet had little effect on hormone binding, except to increase insulin binding at very low insulin concentrations. Hormone binding was further studied in WGA partially purified liver receptor preparations. Those preparations did not exhibit any detectable specific 125I-labelled IGF-1 binding. The specific 125I-labelled insulin binding was not altered by dietary protein level. It is concluded that the increase in skeletal muscle insulin and IGF-1 binding along with a decrease in insulin and IGF-1 in the blood from rats fed on the LP diet, is consistent with the concept of an inverse relationship between plasma hormone and hormone binding. The physiological significance with respect to metabolic adaptation of muscle remains to be established.

Collaboration


Dive into the Jean Grizard's collaboration.

Top Co-Authors

Avatar

Dominique Dardevet

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Michèle Balage

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Elisabeth Debras

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Claire Sornet

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

G. Bayle

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

C. Champredon

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Isabelle Rieu

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Igor Tauveron

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Didier Attaix

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Maurice Arnal

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge