Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jean Himms-Hagen is active.

Publication


Featured researches published by Jean Himms-Hagen.


Experimental Biology and Medicine | 2001

Physiological Role of UCP3 May Be Export of Fatty Acids from Mitochondria When Fatty Acid Oxidation Predominates: An Hypothesis

Jean Himms-Hagen; Mary-Ellen Harper

This hypothesis proposes a physiological role for uncoupling protein-3 (UCP3) in the export of fatty acid anions from muscle and brown adipose tissue (BAT) mitochondria when fatty acids are the predominant substrate being used. It proposes that excess acyl CoA within the mitochondria is hydrolyzed by a mitochondrial acyl CoA thioesterase, yielding fatty acid anion and CoASH. The fatty acid anion is exported to the cytosol by being carried across the inner mitochondrial membrane by UCP3. The CoASH is conserved within the mitochondrion to participate in other reactions for which it is needed during fatty acid oxidation in the β-oxidation cycle and in the tricarboxylic acid cycle. The export of the fatty acid anion thus permits continued rapid fatty acid oxidation in the face of an oversupply. The hypothesis provides a logical explanation for the observed up-regulation of gene expression for UCP3 in muscle when there is a switch to fatty acid oxidation, as during fasting, and in BAT when fatty acid oxidation is stimulated, as during exposure to cold. It provides a plausible physiological role for UCP3 as a transporter protein, not as an uncoupling protein.


Biochemical and Biophysical Research Communications | 1978

A mitochondrial defect in brown adipose tissue of the obese (obob) mouse: Reduced binding of purine nucleotides and a failure to respond to cold by an increase in binding

Jean Himms-Hagen; Michel Desautels

Abstract Atractyloside-insensitive binding of purine nucleotides is reduced in brown adipose tissue mitochondria of the obese ( ob ob ) mouse. Exposure of the ob ob mouse to 4°C does not induce the usual increase in binding. Atractyloside-insensitive binding of purine nucleotides is believed to be a measure of the heat-producing proton conductance pathway in brown adipose tissue mitochondria. It is, therefore, suggested that the impaired thermogenesis of the ob ob mouse is due to a defect in this pathway in the mitochondria of the brown adipose tissue, the major thermogenic tissues in rodents. The greater metabolic efficiency which would result from a reduced operation of this pathway might be the basis for the obesity in the ob ob mouse.


Biochemical Pharmacology | 1997

Hypertrophy of brown adipocytes in brown and white adipose tissues and reversal of diet-induced obesity in rats treated with a β3-adrenoceptor agonist☆☆☆

Masoud Ghorbani; Thomas H. Claus; Jean Himms-Hagen

In a previous study, we demonstrated that chronic treatment with a new beta3-adrenoceptor agonist, CL 316,243 [disodium (R,R)-5-[2-[[2-(3-chlorophenyl)-2-hydroxyethyl]-amino]propyl]-1,3-ben zodioxazole-2,2-dicarboxylate], promoted thermogenesis, caused the appearance of multilocular adipocytes in white adipose tissue (WAT), and retarded development of obesity in young rats eating a high-fat diet (Himms-Hagen et al., Am J Physiol 266: R1371-R1382, 1994). Objectives of the present study were to find out whether CL 316,243 could reverse established diet-induced obesity in rats and to identify the multilocular adipocytes that appeared in WAT. Infusion of CL 316,243 (1 mg/kg/day) reduced abdominal fat, with a decrease in enlarged adipocyte size but no loss of white adipocytes. The resting metabolic rate increased by 40-45%, but food intake was not altered. Abundant densely stained multilocular brown adipocytes expressing uncoupling protein (UCP) appeared in retroperitoneal WAT, in which a marked increase in protein content occurred. UCP content of interscapular brown adipose tissue (BAT) was also increased markedly. We suggest that the substantial increase in the resting metabolic rate induced by CL 316,243 occurs in brown adipocytes in both BAT and WAT. The origin of the brown adipocytes that appeared in WAT is uncertain. They may have been small brown preadipocytes, expressing beta3-adrenoceptors but with few mitochondria and little or no UCP, that were induced to hypertrophy by the beta3-agonist.


Critical Reviews in Clinical Laboratory Sciences | 1999

Physiological Roles of the Leptin Endocrine System: Differences between Mice and Humans

Jean Himms-Hagen

Leptin is a 16-kDa cytokine secreted in humans primarily but not exclusively by adipose tissues. Its concentration in blood is usually proportional to body fat mass, but is higher in women than in men not only because of a different distribution of and greater fat mass in women, but also because testosterone reduces its level in men. Leptin features in different ways during the life span. It is synthesized in the ovary, transported in the oocyte, and made by both fetus and placenta, particularly during the last month of gestation. It is made by the lactating mammary gland and ingested by the newborn infant in its milk. The prime importance of leptin is realized at puberty when it is necessary for progression to a normal adult reproductive status in females. Fasting and chronic undernutrition result in a lower level of leptin in the blood. Lack of leptin results in hunger, ensuring that the individual eat to survive, and also inhibition of reproduction, until such time as food and fat stores are adequate to supply energy for pregnancy and lactation. Thus, leptin is important for survival of the individual and survival of the species. Although an extremely rare genetic absence of leptin induces hyperphagia and obesity in humans, as it does in mice, there appears to be little role for leptin in humans in ensuring that fat stores are not in excess of adequate, that is, in preventing obesity. The mouse differs from humans in many respects, in particular in the far more drastic ways it conserves energy when it very rapidly adapts to lack of food. These include not only suppression of reproduction but also lowering of its body temperature (torpor), suppressing its thyroid function, suppressing its growth, and increasing secretion of stress hormones (from the adrenal). This review concentrates on roles of leptin in human physiology and pathophysiology but also discusses why some observations on actions of leptin in mice are not applicable to humans.


Experimental Biology and Medicine | 1995

Role of brown adipose tissue thermogenesis in control of thermoregulatory feeding in rats: a new hypothesis that links thermostatic and glucostatic hypotheses for control of food intake.

Jean Himms-Hagen

Abstract The hypothesis proposed in this review provides a novel view of both the control of feeding and the function of brown adipose tissue (BAT) thermogenesis. It takes into account the episodic nature of feeding in rats allowed free access to food and the necessity for episodic events in the controlling systems which govern initiation and termination of feeding. A feeding episode is proposed to occur during an episode of increased sympathetic nervous system activity that stimulates BAT thermogenesis and increases body temperature. Two different aspects of stimulated BAT metabolism, namely increased uptake of glucose and increased heat production, evoke initiation and termination of feeding, respectively. Initiation is mediated by a transient dip in blood glucose concentration caused by stimulated glucose utilization in BAT. Feeding continues while both BAT and core temperature continue to rise. Termination is induced by the high level of core temperature brought about by the episode of stimulated BAT thermogenesis. The time between initiation and termination determines the size of the meal and depends on the balance between BAT thermogenesis and heat loss, and thus on ambient temperature. The underlying cause of the episodic stimulation of sympathetic nervous system activity is a decline in core temperature to a level recognized by the hypothalamus as needing a burst of increased heat production. Thus, BAT thermogenesis is important in control of meal size, relating it to thermoregulatory needs. When this function is lost, as in many obese animal models of obesity, the animal loses its ability to remain in energy balance by precisely adjusting its intake in relation to environmental temperature and meal size increases. The hypothesis also predicts that an increase in endogenous heat production that is not due to BAT thermogenesis will prevent the matching of intake to increased expenditure via thermoregulatory feeding.


Lipids | 1972

Lipid metabolism during cold-exposure and during cold-acclimation

Jean Himms-Hagen

The lipid-containing tissues are important in cold-exposure (exposure to cold of animals not previously living in the cold) and in cold-acclimation (the adaptive state achieved when animals have lived in the cold for several weeks); these are the white adipose tissue and the brown adipose tissue. The white adipose tissue serves as a store of readily mobilized substrate (free fatty acids [FFA]) for calorigenesis in other tissues during cold-exposure, principally for shivering thermogenesis in muscle. The mobilization of the sterol lipid is brought about through activation of the sympathetic nervous system by the cold stress. The brown adipose tissue has two functions in cold-exposure and in cold-adaptation, both quite distinct from the function of the white adipose tissue. These functions are heat production and the maintenance of the adaptationto cold. The triglycerides stored in the brown adipose tissue are mobilized as FFA, also via activation of the sympathetic nervous system, but the FFA are used primarily within the brown adipose tissue itself. The FFA are the agents which switch on the calorigenesis in the brown adipose tissue (via a poorly understood form of “loosening” of the coupling of oxidative phosphorylation); they also serve as the substrate for the calorigenesis. The heat-producing function of the brown adipose tissue occurs in both cold-exposed and in cold-acclimated animals; it is of greater importance in the latter because this tissue normally grows in response to cold. Much of the heat production in cold-acclimated animals (nonshivering thermogenesis) occurs outside the brown adipose tissue itself, most probably in the muscles, and the cold-acclimated animal differs from the cold-exposed animal in being able to switch on nonshivering thermogenesis via activation of the sympathetic nervous system. The maintenance of this adaptation for nonshivering thermogenesis in tissue other than the brown adipose tissue itself depends upon the brown adipose tissue. The adaptation disappears if the brown adipose tissue is removed; the adaptation does not develop if the normal proliferation of mitochondria in the growing brown adipose tissue is inhibited (with oxytetracycline) during acclimation of rats to cold. The mechanism by which the brown adipose tissue exerts this second function is at present unknown. An increased turnover of certain mitochondrial proteins occurs in those tissues (skeletal muscle and brown adipose tissue) in which nonshivering thermogenesis occurs in cold-acclimated rats; no change in turnover of mitochondrial proteins occurs in other tissues (liver and kidney). The relation of this alteration in mitochondrial proteins to the adaptation for nonshivering thermogenesis is at present unknown. However this first demonstration of a biochemical difference between skeletal muscle of cold-acclimated rats and skeletal muscle of warm-acclimated rats opens up a new approach to the study of the nature of both the adaptation for nonshivering thermogenesis and of the role of the brown adipose tissue in the development and maintenance of this adaptation.


Biochimica et Biophysica Acta | 2001

Mitochondrial efficiency: lessons learned from transgenic mice

Mary-Ellen Harper; Jean Himms-Hagen

Metabolic research has, like most areas of research in the life sciences, been affected dramatically by the application of transgenic technologies. Within the specific area of bioenergetics it has been thought that transgenic approaches in mice would provide definitive proof for some longstanding metabolic theories and assumptions. Here we review a number of transgenic approaches that have been used in mice to address theories of mitochondrial efficiency. The focus is largely on genes that affect the coupling of energy substrate oxidation to ATP synthesis, and thus, mice in which the uncoupling protein (Ucp) genes are modified are discussed extensively. Transgenic approaches have indeed provided proof-of-concept in some instances, but in many other instances they have yielded results that are in contrast to initial hypotheses. Many studies have also shown that genetic background can affect phenotypic outcomes, and that the upregulated expression of genes that are related to the modified gene often complicates the interpretation of findings.


Journal of Bioenergetics and Biomembranes | 1977

Alteration in skeletal muscle mitochondria of cold-acclimated rats: Association with enhanced metabolic response to noradrenaline

Willy A. Behrens; Jean Himms-Hagen

This paper reports a search for structural changes in skeletal muscle mitochondria of cold-acclimated rats. Histochemical studies (succinic dehydrogenase) show that there appears to be a higher proportion of red fibers in the semitendinosus muscle of the cold-acclimated rat and that the white region of this muscle contains fibers which resemble intermediate fibers. Electron micrographs show an apparently larger number of small mitochondria in both red and white fibers. Counts of mitochondria isolated from skeletal muscle show that there are more mitochondria per gram of both red and white muscle in the cold-acclimated rat than in the non-acclimated control rat. Each mitochondrion contains less protein and less cytochrome oxidase. Thus the mitochondrial mass per gram of red and white muscle is not altered, as indicated by the unchanged content of mitochondrial protein and of cytochrome oxidase per gram of muscle. Thus there appears to be a repackaging of mitochondrial material into smaller units in the skeletal muscle of the cold-acclimated rat. The alteration is shown to be associated with the adaptive state of the rat. No change occurs in muscle mitochondria of cold-acclimated rats in which the development of the enhanced metabolic response to noradrenaline, a measure of the extent of adaptation, is inhibited by treatment with oxytetracycline. The change in skeletal muscle mitochondria disappears when the enhanced metabolic response to noradrenaline in rats which are already cold-climated is reversed by treating the rats with oxytetracycline while they continue to live in the cold. The change in muscle mitochondria also disappears when the cold-acclimated rat undergoes deacclimation after return to room temperature. The alteration in muscle mitochondria is thus not associated either with shivering or with a high metabolic rate. Skeletal muscle of the cold-acclimated rat is known to be an important site of heat production in the course of nonshivering thermogenesis; that is, it can undergo a considerable increase in metabolic rate in the absence of shivering on exposure of the cold-acclimated rat to cold. The metabolic basis of nonshivering thermogenesis is in an enhanced capacity of the tissues of the cold-acclimated rat, principally skeletal muscle, to respond by an increase in metabolic rate to the large amounts of noradrenaline secreted by the nerve endings of the sympathetic nervous system as a consequence of cold-exposure. The mechanism by which the metabolic response to noradrenaline in the cold-acclimated rat can be enhanced is unknown. The structural alteration observed in the skeletal muscle mitochondria of the cold-acclimated rat may indicate a functional alteration responsible for the enhanced capacity of the muscle to respond to noradrenaline by an increase in metabolic rate.


Physiology & Behavior | 1985

Lack of diet-induced thermogenesis in brown adipose tissue of obese medial hypothalamic-lesioned rats

Susan Hogan; Jean Himms-Hagen; Donald V. Coscina

Radiofrequency heat lesions were made in the medial hypothalamus of 12-week old male and female Holtzman rats. Two to three days later rats were offered a palatable cafeteria diet in addition to chow or were fed chow alone for the next 3-4 weeks. Male lesioned rats were only slightly hyperphagic on the chow diet and gained little extra weight. When fed the cafeteria diet, energy intake of male lesioned rats almost doubled in comparison with chow-fed lesioned rats and a very rapid extra weight gain occurred. Despite the marked hyperphagia, thermogenesis in brown adipose tissue was suppressed in the cafeteria-fed lesioned rats, as indicated by low mitochondrial guanosine diphosphate (GDP) binding. In female rats, lesions induced much greater hyperphagia and body weight gain than in male rats, particularly when they ate the cafeteria diet. Again, thermogenesis in brown adipose tissue was suppressed in the cafeteria-fed female lesioned rats. The proportion of energy derived from carbohydrate was not altered by the cafeteria diet in either male or female rats, whether lesioned or not, but there was an increase in the proportion of energy derived from fat at the expense of protein. No sex differences in food selection were observed. The accumulation of body fat was always greater in female lesioned rats than in male lesioned rats for similar food intakes. It is concluded that medial hypothalamic lesions prevent the normal occurrence of diet-induced thermogenesis in brown adipose tissue despite extreme overeating by the rats of a palatable cafeteria diet.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 1998

Temperature-dependent feeding: lack of role for leptin and defect in brown adipose tissue-ablated obese mice

Anna Melnyk; Jean Himms-Hagen

The objective was to characterize the ability of control and transgenic brown adipose tissue (BAT)-ablated uncoupling protein diphtheria toxin A chain (UCP-DTA) mice to adjust food intake in relation to changes in environmental temperature and to assess the involvement of leptin in this adjustment. We measured serum leptin in mice from a previous study of UCP-DTA mice raised at thermoneutrality (35 degrees C) or at the usual rearing temperature (24 degrees C) from weaning [Melnyk, A., M. -E. Harper, and J. Himms-Hagen. Am. J. Physiol, 272 (Regulatory Integrative Comp. Physiol. 41): R1088-R1093, 1997] and extended the study by acclimating control and obese UCP-DTA mice at 18 wk of age to cold (14 degrees C) for up to 14 days. Leptin levels did not change in control mice at 14 degrees C; however, food intake increased threefold within 1 day and remained at this level. Serum leptin level was elevated in UCP-DTA mice at 24 degrees C compared with control mice at 24 degrees C; this elevated level decreased within 1 day at 14 degrees C and was not different from the level in control mice by 14 days. Food intake of UCP-DTA mice that were hyperphagic at 24 degrees C did not change during 7 days at 14 degrees C, then increased slowly. Similar low leptin levels were present in control mice raised at 24 or 35 degrees C and in UCP-DTA mice raised at 35 degrees C. Food intake of control mice raised at 24 degrees C was two times that of control mice raised at 35 degrees C. UCP-DTA mice raised at 35 degrees C ate the same low amount as control mice raised at 35 degrees C. UCP-DTA mice at 24 degrees C were hyperphagic relative to control mice at 24 degrees C yet had elevated leptin levels in their serum. Two principal conclusions are drawn. First, adjustment of food intake over a fourfold range by control mice acclimated to temperatures from 35 down to 14 degrees C is independent of changes in serum leptin levels. Second, this adjustment of food intake in relation to temperature is defective in the UCP-DTA mouse; the defect leads to hyperphagia at 24 degrees C and a failure to increase food intake as rapidly as control mice when exposed to 14 degrees C. Because lack of UCP-1-mediated thermogenesis in BAT of knockout mice is known not to induce hyperphagia, we propose that deficiency of UCP-1-expressing brown adipocytes in BAT of UCP-DTA mice results in lack of a satiety factor, secreted by these cells in BAT of control mice in inverse relationship to sympathetic nervous system activity.The objective was to characterize the ability of control and transgenic brown adipose tissue (BAT)-ablated uncoupling protein diphtheria toxin A chain (UCP-DTA) mice to adjust food intake in relation to changes in environmental temperature and to assess the involvement of leptin in this adjustment. We measured serum leptin in mice from a previous study of UCP-DTA mice raised at thermoneutrality (35°C) or at the usual rearing temperature (24°C) from weaning [Melnyk, A., M.-E. Harper, and J. Himms-Hagen. Am. J. Physiol. 272 ( Regulatory Integrative Comp. Physiol. 41): R1088-R1093, 1997] and extended the study by acclimating control and obese UCP-DTA mice at 18 wk of age to cold (14°C) for up to 14 days. Leptin levels did not change in control mice at 14°C; however, food intake increased threefold within 1 day and remained at this level. Serum leptin level was elevated in UCP-DTA mice at 24°C compared with control mice at 24°C; this elevated level decreased within 1 day at 14°C and was not different from the level in control mice by 14 days. Food intake of UCP-DTA mice that were hyperphagic at 24°C did not change during 7 days at 14°C, then increased slowly. Similar low leptin levels were present in control mice raised at 24 or 35°C and in UCP-DTA mice raised at 35°C. Food intake of control mice raised at 24°C was two times that of control mice raised at 35°C. UCP-DTA mice raised at 35°C ate the same low amount as control mice raised at 35°C. UCP-DTA mice at 24°C were hyperphagic relative to control mice at 24°C yet had elevated leptin levels in their serum. Two principal conclusions are drawn. First, adjustment of food intake over a fourfold range by control mice acclimated to temperatures from 35 down to 14°C is independent of changes in serum leptin levels. Second, this adjustment of food intake in relation to temperature is defective in the UCP-DTA mouse; the defect leads to hyperphagia at 24°C and a failure to increase food intake as rapidly as control mice when exposed to 14°C. Because lack of UCP-1-mediated thermogenesis in BAT of knockout mice is known not to induce hyperphagia, we propose that deficiency of UCP-1-expressing brown adipocytes in BAT of UCP-DTA mice results in lack of a satiety factor, secreted by these cells in BAT of control mice in inverse relationship to sympathetic nervous system activity.

Collaboration


Dive into the Jean Himms-Hagen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bradford B. Lowell

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Joel Lawitts

Beth Israel Deaconess Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge