Jean-Jacques Lacapère
University of Paris
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jean-Jacques Lacapère.
Steroids | 2003
Jean-Jacques Lacapère; Vassilios Papadopoulos
Cholesterol transport from the outer to the inner mitochondrial membrane is the rate-determining step in steroid and bile acid biosyntheses. Biochemical, pharmacological and molecular studies have demonstrated that the peripheral-type benzodiazepine receptor (PBR) is a five transmembrane domain mitochondrial protein involved in the regulation of cholesterol transport. PBR gene disruption in Leydig cells completely blocked cholesterol transport into mitochondria and steroid formation, while PBR expression in bacteria, devoid of endogenous PBR and cholesterol, induced cholesterol uptake and transport. Molecular modeling of PBR suggested that cholesterol might cross the membrane through the five helices of the receptor and that synthetic and endogenous ligands might bind to common sites in the cytoplasmic loops. A cholesterol recognition/interaction amino acid consensus (CRAC) sequence in the cytoplasmic carboxy-terminus of the PBR was identified by mutagenesis studies. In vitro reconstitution of PBR into proteoliposomes demonstrated that PBR binds both drug ligands and cholesterol with high affinity. In vivo polymeric forms of PBR were observed and polymer formation was reproduced in vitro, using recombinant PBR protein reconstituted into proteoliposomes, associated with an increase in drug ligand binding and reduction of cholesterol-binding capacity. This suggests that the various polymeric states of PBR might be part of a cycle mediating cholesterol uptake and release into the mitochondria, with PBR functioning as a cholesterol exchanger against steroid product(s) arising from cytochrome P450 action. Taking into account the widespread presence of PBR in many tissues, a more general role of PBR in intracellular cholesterol transport and compartmentalization might be considered.
Journal of Pharmacology and Experimental Therapeutics | 2007
Thierry Bordet; Bruno Buisson; Magali Michaud; Cyrille Drouot; Pascale Galéa; Pierre Delaage; Natalia P. Akentieva; Alex S. Evers; Douglas F. Covey; Mariano A. Ostuni; Jean-Jacques Lacapère; Charbel Massaad; Michael Schumacher; Esther-Marie Steidl; Delphine Maux; Michel Delaage; Christopher E. Henderson; Rebecca M. Pruss
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by progressive death of cortical and spinal motor neurons, for which there is no effective treatment. Using a cell-based assay for compounds capable of preventing motor neuron cell death in vitro, a collection of approximately 40,000 low-molecular-weight compounds was screened to identify potential small-molecule therapeutics. We report the identification of cholest-4-en-3-one, oxime (TRO19622) as a potential drug candidate for the treatment of ALS. In vitro, TRO19622 promoted motor neuron survival in the absence of trophic support in a dose-dependent manner. In vivo, TRO19622 rescued motor neurons from axotomy-induced cell death in neonatal rats and promoted nerve regeneration following sciatic nerve crush in mice. In SOD1G93A transgenic mice, a model of familial ALS, TRO19622 treatment improved motor performance, delayed the onset of the clinical disease, and extended survival. TRO19622 bound directly to two components of the mitochondrial permeability transition pore: the voltage-dependent anion channel and the translocator protein 18 kDa (or peripheral benzodiazepine receptor), suggesting a potential mechanism for its neuroprotective activity. TRO19622 may have therapeutic potential for ALS and other motor neuron and neurodegenerative diseases.
Journal of Pharmacology and Experimental Therapeutics | 2010
Sophie Schaller; Stéphanie Paradis; Gladys A. Ngoh; Rana Assaly; Bruno Buisson; Cyrille Drouot; Mariano A. Ostuni; Jean-Jacques Lacapère; Firas Bassissi; Thierry Bordet; Alain Berdeaux; Steven P. Jones; Didier Morin; Rebecca M. Pruss
3,5-Seco-4-nor-cholestan-5-one oxime-3-ol (TRO40303) is a new cardioprotective compound coming from a chemical series identified initially for neuroprotective properties. TRO40303 binds specifically to the mitochondrial translocator protein 18 kDa (TSPO) at the cholesterol site. After intravenous administration, TRO40303 tissue distribution was comparable to that of TSPO, and, in particular, the drug accumulated rapidly in the heart. In a model of 35 min of myocardial ischemia/24 h of reperfusion in rats, TRO40303 (2.5 mg/kg) reduced infarct size by 38% (p < 0.01 versus control), when administered 10 min before reperfusion, which was correlated with reduced release of apoptosis-inducing factor from mitochondria to the cytoplasm in the ischemic area at risk. Although TRO40303 had no effect on the calcium retention capacity of isolated mitochondria, unlike cyclosporine A, the drug delayed mitochondrial permeability transition pore (mPTP) opening and cell death in isolated adult rat cardiomyocytes subjected to 2 h of hypoxia followed by 2 h of reoxygenation and inhibited mPTP opening in neonatal rat cardiomyocytes treated with hydrogen peroxide. The effects of TRO40303 on mPTP in cell models of oxidative stress are correlated with a significant reduction in reactive oxygen species production and subsequent calcium overload. TRO40303 is a new mitochondrial-targeted drug and inhibits mPTP triggered by oxidative stress. Its mode of action differs from that of other mPTP inhibitors such as cyclosporine A, thus providing a new pharmacological approach to study mPTP regulation. Its efficacy in an animal model of myocardial infarctions makes TRO40303 a promising new drug for the reduction of cardiac ischemia-reperfusion injury.
Trends in Biochemical Sciences | 2008
Jean-Michel Neumann; Alain Couvineau; Samuel Murail; Jean-Jacques Lacapère; Nadège Jamin; Marc Laburthe
The class B family of G-protein-coupled receptors (GPCRs) regulates essential physiological functions such as exocrine and endocrine secretions, feeding behaviour, metabolism, growth, and neuro- and immuno-modulations. These receptors are activated by endogenous peptide hormones including secretin, glucagon, vasoactive intestinal peptide, corticotropin-releasing factor and parathyroid hormone. We have identified a common structural motif that is encoded in all class B GPCR-ligand N-terminal sequences. We propose that this local structure, a helix N-capping motif, is formed upon receptor binding and constitutes a key element underlying class B GPCR activation. The folded backbone conformation imposed by the capping structure could serve as a template for a rational design of drugs targeting class B GPCRs in several diseases.
Journal of Biological Chemistry | 2006
Yossan-Var Tan; Alain Couvineau; Samuel Murail; Emilie Ceraudo; Jean-Michel Neumann; Jean-Jacques Lacapère; Marc Laburthe
The neuropeptide vasoactive intestinal peptide (VIP) strongly impacts on human pathophysiology and does so through interaction with class II G protein-coupled receptors named VIP pituitary adenylate cyclase-activating peptide (PACAP) receptors (VPACs). The molecular nature of VIP binding to receptors remains elusive. In this work, we have docked VIP in the human VPAC1 receptor by the following approach. (i) VIP probes containing photolabile residues in positions 6, 22, and 24 of VIP were used to photolabel the receptor. After receptor cleavage and Edman sequencing of labeled receptor fragments, it was shown that Phe6, Tyr22, and Asn24 of VIP are in contact with Asp107, Gly116, and Cys122 in the N-terminal ectodomain (N-ted) of the receptor, respectively. (ii) The structure of VIP was determined by NMR showing a central α helix, a disordered N-terminal His1-Phe6 segment and a 310 Ser25-Asn28 helix termination. (iii) A three-dimensional model of the N-ted of hVPAC1 was constructed by using the NMR structure of the N-ted of corticotropin-releasing factor receptor 2β as a template. As expected, the fold is identified as a short consensus repeat with two antiparallel β sheets and is stabilized by three disulfide bonds. (iv) Taking into account the constraints provided by photoaffinity, VIP was docked into the hVPAC1 receptor N-ted. The 6-28 fragment of VIP nicely lies in the N-ted C-terminal part, but the N terminus region of VIP is free for interacting with the receptor transmembrane region. The data provide a structural rationale to the proposed two-step activation mechanism of VPAC receptor and more generally of class II G protein-coupled receptors.
Biochimica et Biophysica Acta | 2008
Samuel Murail; Jean-Claude Robert; Yves-Marie Coïc; Jean-Michel Neumann; Mariano A. Ostuni; Zhin-Xing Yao; Vassilios Papadopoulos; Nadège Jamin; Jean-Jacques Lacapère
Numerous biological functions are attributed to the peripheral-type benzodiazepine receptor (PBR) recently renamed translocator protein (TSPO). The best characterized function is the translocation of cholesterol from the outer to inner mitochondrial membrane, which is a rate-determining step in steroid biosynthesis. TSPO drug ligands have been shown to stimulate pregnenolone formation by inducing TSPO-mediated translocation of cholesterol. Until recently, no direct structural data on this membrane protein was available. In a previous paper, we showed that a part of the mouse TSPO (mTSPO) C-terminal region adopts a helical conformation, the side-chain distribution of which provides a groove able to fit a cholesterol molecule. We report here on the overall structural properties of mTSPO. This study was first undertaken by dissecting the protein sequence and studying the conformation of five peptides encompassing the five putative transmembrane domains from (1)H-NMR data. The secondary structure of the recombinant protein in micelles was then studied using CD spectroscopy. In parallel, the stability of its tertiary fold was probed using (1)H-(15)N NMR. This study provides the first experimental evidence for a five-helix fold of mTSPO and shows that the helical conformation of each transmembrane domain is mainly formed through local short-range interactions. Our data show that, in micelles, mTSPO exhibits helix content close to what is expected but an unstable tertiary fold. They reveal that the binding of a drug ligand that stimulates cholesterol translocation is able to stabilize the mTSPO tertiary structure.
Journal of Immunology | 2007
Cyrille Hoarau; Bénédicte Gérard; Emmanuel Lescanne; Dominique Henry; Stéphanie François; Jean-Jacques Lacapère; Jamel El Benna; Pham My-Chan Dang; Bernard Grandchamp; Yvon Lebranchu; Marie-Anne Gougerot-Pocidalo; Carole Elbim
Polymorphonuclear neutrophils (PMN) play a key role in innate immunity. Their activation and survival are tightly regulated by microbial products via pattern recognition receptors such as TLRs, which mediate recruitment of the IL-1R-associated kinase (IRAK) complex. We describe a new inherited IRAK-4 deficiency in a child with recurrent pyogenic bacterial infections. Analysis of the IRAK4 gene showed compound heterozygosity with two mutations: a missense mutation in the death domain of the protein (pArg12Cys) associated in cis-with a predicted benign variant (pArg391His); and a splice site mutation in intron 7 that led to the skipping of exon 7. A nontruncated IRAK-4 protein was detected by Western blotting. The patient’s functional deficiency of IRAK-4 protein was confirmed by the absence of IRAK-1 phosphorylation after stimulation with all TLR agonists tested. The patient’s PMNs showed strongly impaired responses (L-selectin and CD11b expression, oxidative burst, cytokine production, cell survival) to TLR agonists which engage TLR1/2, TLR2/6, TLR4, and TLR7/8; in contrast, the patient’s PMN responses to CpG-DNA (TLR9) were normal, except for cytokine production. The surprisingly normal effect of CpG-DNA on PMN functions and apoptosis disappeared after pretreatment with PI3K inhibitors. Together, these results suggest the existence of an IRAK-4-independent TLR9-induced transduction pathway leading to PI3K activation. This alternative pathway may play a key role in PMN control of infections by microorganisms other than pyogenic bacteria in inherited IRAK-4 deficiency.
Journal of Biological Chemistry | 1998
Nathalie Saint; Jean-Jacques Lacapère; Liqun Gu; Alexandre Ghazi; Boris Martinac; Jean-Louis Rigaud
We have established a reconstitution method of the detergent-solubilized recombinant large mechanosensitive ion channel of Escherichia coli (MscL) that yielded two-dimensional crystals. For that purpose, we have developed a new protocol using Triton X-100 to solubilize and purify the MscL protein. This protocol not only allowed an increase in the protein yield but also made it possible to obtain a homogeneous delipidated and reproducible preparation of the purified protein. When examined by the patch-clamp method MscL channels were found to be fully functional, exhibiting characteristic conductance and activation by pressure. For electron crystallography the homogeneous Triton X-100-purified recombinant MscL was further reconstituted at low lipid-to-protein ratios using Bio-Beads SM2 to remove the detergent. Two-dimensional crystals, exhibiting a p6 plane group symmetry, have been produced and examined by negative stain electron microscopy. Image processing of selected micrographs yielded a projection map at 15-Å resolution that provided the first explicit structural information about the molecular boundary and homohexameric organization of the MscL channels in the membrane bilayer.
Inflammatory Bowel Diseases | 2010
Mariano A. Ostuni; Leeyah Issop; Gabriel Péranzi; Francine Walker; Magali Fasseu; Carole Elbim; Vassilios Papadopoulos; Jean-Jacques Lacapère
Background: Inflammatory bowel diseases (IBDs), such as ulcerative colitis and Crohns disease, are chronic inflammatory disorders that increase the risk for colorectal cancer. The mitochondrial translocator protein (TSPO) is a high‐affinity drug‐ and cholesterol‐binding protein expressed in the colon and its expression is increased in colon cancers. The aim of this study was to investigate TSPO expression in IBD biopsies and to establish an animal model of IBD to examine the role of TSPO. In addition, we evaluated the potential use of TSPO drug ligands in diagnosing and treating IBD. Methods: TSPO expression in IBD biopsies was evaluated using immunohistochemistry. IBD was induced in a rat experimental model via treatment with dextran sodium sulfate (DSS). Colon morphology, TSPO expression, and proinflammatory cytokine production were evaluated in addition to the effect of TSPO drug ligands on disease pathology. Results: TSPO protein levels were elevated in the enterocytes of IBD biopsies. TSPO expression was localized to the enterocyte mitochondria. DSS treatment induced a time‐dependent phenotype mimicking IBD with tissue injury and subsequent tissue regeneration. Coadministration of DSS and the TSPO drug ligands PK 11195 or Ro5‐4864 increased both the rate of colon ulceration and regeneration, whereas administration of the TSPO drug ligand flunitrazepam partially prevented this pathology. These data correlated with changes in proinflammatory cytokine plasma levels, as well as increased cytokine production and secretion from the colon. Conclusions: TSPO may serve as a marker of the IBD repair process, and TSPO drug ligands should be further evaluated for IBD treatment. (Inflamm Bowel Dis 2010)
European Journal of Cancer | 2009
Julie Di Lucca; Mickael Guedj; Jean-Jacques Lacapère; Maria Concetta Fargnoli; Agnes Bourillon; Philippe Dieudé; Nicolas Dupin; P. Wolkenstein; Philippe Aegerter; Philippe Saiag; Vincent Descamps; Celeste Lebbe; Nicole Basset-Seguin; Ketty Peris; Bernard Grandchamp; Nadem Soufir
PURPOSE Xeroderma pigmentosum variant (XPV) is a rare recessive autosomal genodermatosis predisposing to multiple early onset skin cancers, including melanoma. XPV results from mutations of the POLH gene that encodes a DNA translesion polymerase. In this work, we tested the hypothesis that POLH variants could be associated with melanoma risk. EXPERIMENTAL DESIGN A common non-synonymous POLH variant, c.1783A>G p.M595V, was genotyped in 1075 melanoma patients and in 1091 ethnic-matched controls from France. In addition, we searched for rare POLH variants by sequencing the entire coding sequence in 201 patients having a familial history of melanoma (n=123), sporadic multiple melanomas (n=65) and a melanoma associated with a skin carcinoma (n=13). RESULTS Overall, the c.1783G, p.595V allele was statistically associated with melanoma (respective allelic frequencies, 0.040 versus 0.022, P-value=1.17 x 10(-3), odds ratio (OR)=1.86 [1.27-2.71]), which was further confirmed by a meta-analysis including 274 patients and 174 matched controls from Italy (P-value=7.7 x 10(-4), OR=1.84 [1.29-2.63]). Interestingly, three non-synonymous POLH variants were identified in three patients (c.295G>A p.V99M, c.815T>C p.I272T and c.1745C>T p.S582L) which were absent in 352 chromosome controls from healthy subjects. CONCLUSIONS Besides severe deficiencies in translesion synthesis which are major risks factors for skin carcinomas and melanomas, less deleterious POLH variants could act as low penetrance melanoma predisposing alleles. The ongoing identification of genetic markers implied in skin cancer predisposition could help to identify high-risk subjects as targets for clinical follow-up. Replication studies in other populations are awaited to assess these data.