Jean-Jacques Lareyre
Institut national de la recherche agronomique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jean-Jacques Lareyre.
General and Comparative Endocrinology | 2010
Rüdiger W. Schulz; Luiz R. França; Jean-Jacques Lareyre; Florence LeGac; Hélio Chiarini-Garcia; Rafael H. Nóbrega; Takeshi Miura
Spermatogenesis is a developmental process during which a small number of diploid spermatogonial stem cells produce a large number of highly differentiated spermatozoa carrying a haploid, recombined genome. We characterise morphologically the different germ cell stages with particular attention for the spermatogonial generations, including the stem cells and their specific capacity to colonise a recipients testis after transplantation. We propose a nomenclature for fish germ cells to improve the comparability among different teleost fish but also to higher vertebrates. Survival and development of germ cells depends on their continuous and close contact to Sertoli cells, and we review their multiple roles in the cystic mode of spermatogenesis seen in fish. We then discuss gene expression patterns associated with testis maturation. The endocrine system of vertebrates has evolved as master control system over spermatogenesis. In fish, both pituitary gonadotropins LH and FSH stimulate gonadal sex steroid hormone production directly by activating Leydig cells. Information is reviewed on the effects of progestin, androgens, and estrogens on global testicular gene expression patterns (microarray analysis), and on the molecular mechanisms by which steroids regulate specific candidate genes (identified by subtractive hybridization approaches) during early stages of testis maturation. Moreover, progestin and androgen effects on spermiation and milt hydration are discussed. Sex steroids mainly act via receptors expressed by Sertoli cells. One type of response is that Sertoli cells change growth factor expression, which subsequently modulates germ cell proliferation/differentiation via mechanisms yet to be characterised. Finally, we review data on germ cell autonomous processes, mainly derived from loss-of-function mutant fish lines, before identifying a number of focus areas for future research activities.
General and Comparative Endocrinology | 2010
Berta Levavi-Sivan; Jan Bogerd; Evaristo L. Mañanós; Ana M. Gómez; Jean-Jacques Lareyre
Teleosts lack a hypophyseal portal system and hence neurohormones are carried by nerve fibers from the preoptic region to the pituitary. The various cell types in the teleost pituitary are organized in discrete domains. Fish possess two gonadotropins (GtH) similar to FSH and LH in other vertebrates; they are heterodimeric hormones that consist of a common alpha subunit non-covalently associated with a hormone-specific beta subunit. In recent years the availability of molecular cloning techniques allowed the isolation of the genes coding for the GtH subunits in 56 fish species representing at least 14 teleost orders. Advanced molecular engineering provides the technology to produce recombinant GtHs from isolated cDNAs. Various expression systems have been used for the production of recombinant proteins. Recombinant fish GtHs were produced for carp, seabream, channel and African catfish, goldfish, eel, tilapia, zebrafish, Manchurian trout and Orange-spotted grouper. The hypothalamus in fishes exerts its regulation on the release of the GtHs via several neurohormones such as GnRH, dopamine, GABA, PACAP, IGF-I, norepinephrine, NPY, kisspeptin, leptin and ghrelin. In addition, gonadal steroids and peptides exert their effects on the gonadotropins either directly or via the hypothalamus. All these are discussed in detail in this review. In mammals, the biological activities of FSH and LH are directed to different gonadal target cells through the cell-specific expression of the FSH receptor (FSHR) and LH receptor (LHR), respectively, and the interaction between each gonadotropin-receptor couple is highly selective. In contrast, the bioactivity of fish gonadotropins seems to be less specific as a result of promiscuous hormone-receptor interactions, while FSHR expression in Leydig cells explains the strong steroidogenic activity of FSH in certain fish species.
Archive | 2002
Gail A. Cornwall; Jean-Jacques Lareyre; Robert J. Matusik; Barry T. Hinton; Marie-Claire Orgebin-Crist
The epididymis is a long convoluted tubule through which spermatozoa must pass to acquire the functions of progressive motility and fertility. Since spermatozoa entering the epididymis are, for the most part, synthetically inactive, the process of sperm maturation is thought to involve the interaction of spermatozoa with proteins that are synthesized and secreted by the epididymal epithelium. The epididymal epithelial cells secrete proteins in a highly regulated and regionalized manner such that spermatozoa encounter luminal fluid proteins in a specific sequence. Indeed, each region within the epididymis is its own microenvironment uniquely controlled by the cells’ differential response to extracellular signals and mediated by specific signaling molecules and DNA binding proteins ultimately resulting in region-specific gene expression and secretion of proteins. To understand the complex process of sperm maturation, therefore, not only requires the identification of secretory proteins which interact with spermatozoa but also knowledge of specific signal transduction pathways and regulatory proteins involved in this highly orchestrated series of events. Recently, significant progress has been made towards our understanding of epididymal function by the application of transgenic and gene inactivation approaches to examine gene regulation and function in the epididymis. The objectives of this review are to discuss region-specific expression of genes expressed exclusively or predominantly in the epididymis, the mechanisms regulating this tissue- and region-specific gene expression, and the value of transgenic technology for understanding epididymal function.
The Journal of Steroid Biochemistry and Molecular Biology | 2000
Shaojun Liu; Marina Govoroun; Helena D'Cotta; Marie-José Ricordel; Jean-Jacques Lareyre; Oonagh Marie McMeel; Terry J. Smith; Yoshitaka Nagahama
Abstract Androgens and especially 11-oxygenated androgens are known to be potent masculinizing steroids in fish. As a first step to study their physiological implication in gonadal sex differentiation in fish, we cloned a testicular cytochrome P45011β (11β-hydroxylase) cDNA in the rainbow trout, Oncorhynchus mykiss. We isolated a 1882 bp P45011β cDNA (rt11βH2, AF217273) which contains an open reading frame encoding a 552 putative amino acids protein. This sequence was highly homologous (98% in nucleotides and 96.5% in amino acids) to another rainbow trout P45011β sequence (AF179894) and also to a Japanese eel P45011β (68% in amino acids). Northern blot analysis detected a single transcript of 2 kb which was highly expressed in the testis (stage II) and to a lesser degree in the anterior kidney (containing the interrenal tissue). No signal was detected in the posterior kidney, brain, liver, skin, intestine and heart. In the testis this transcript was highly expressed at the beginning of spermatogenesis (stages I and II), followed by a decrease during late spermatogenesis (stages III to V). By semi-quantitative reverse transcription polymerase chain reaction, P45011β expression during gonadal differentiation was estimated to be at least 100 times higher in male than in female gonads. This difference was first detected at 55 days post-fertilization (dpf), i.e. 3 weeks before the first sign of histological sex differentiation, and was sustained long after differentiation (127 dpf). Specific P45011β gene expression was also demonstrated before testis differentiation (around 50 dpf) using virtual Northern blot, with no expression detected in female differentiating gonads. From these results, and also based on the already known actions of 11-oxygenated androgens in testicular differentiation in fish, it is now suggested that P45011β gene expression is a key factor for the testicular differentiation in rainbow trout.
Journal of Biological Chemistry | 1999
Jean-Jacques Lareyre; Tania Z. Thomas; Wen-Li Zheng; Susan Kasper; David E. Ong; Marie-Claire Orgebin-Crist; Robert J. Matusik
The murine epididymis synthesizes and secretes a retinoic acid-binding protein (mE-RABP) that belongs to the lipocalin superfamily. The gene encoding mE-RABP is specifically expressed in the mouse mid/distal caput epididymidis under androgen control. In transgenic mice, a 5-kilobase pair (kb) promoter fragment, but not a 0.6-kb fragment, of the mE-RABP gene driving the chloramphenicol acetyltransferase (CAT) reporter gene restricted high level of transgene expression to the caput epididymidis. No transgene expression was detected in any other male or female tissues. Immunolocalization of the CAT protein and in situ hybridization of the corresponding CAT mRNA indicated that transgene expression occurred in the principal cells of the mid/distal caput epididymidis, thereby mimicking the spatial endogenous mE-RABP gene expression. Transgene and mE-RABP gene expression was detected from 30 days and progressively increased until 60 days of age. Castration, efferent duct ligation, and hormone replacement studies demonstrated that transgene expression was specifically regulated by androgen but not by any other testicular factors. Altogether, our results demonstrate that the 5-kb promoter fragment of the mE-RABP gene contains all of the information required for the hormonal regulation and the spatial and temporal expression of the mE-RABP gene in the epididymis.
Journal of Endocrinology | 2007
Elisabeth Sambroni; F. Le Gac; Bernard Breton; Jean-Jacques Lareyre
In vertebrates, gonadotropins (GTHs) (FSH and LH) are two circulating pituitary glycoprotein hormones that play a major role in the regulation of gonadal functions, including gonadal cell proliferation/differentiation and steroidogenesis. In mammals, it is well known that their biological effects are mediated by highly specific membrane-bound receptors expressed preferentially on the somatic cells of the gonads. However, in fish, binding and functional studies have shown that cross-reactivity may occur in GTH receptors depending on the species. To understand the molecular mechanisms involved in GTH actions, functional characterization of trout GTH receptors and their gonadal gene expression pattern has been carried out. The present study describes the presence of two distinct GTH receptors in trout showing similarities with those of higher vertebrates but also differences in their structural determinants. In vitro functional studies demonstrate that rtLH specifically activates its cognate receptor (EC(50) = 117 ng/ml), whereas purified rainbow trout FSH (rtFSH) activates FSHR but also LHR at supraphysiological doses (EC(50) = 38 vs 598 ng/ml for FSHR and LHR respectively). The high doses of rtFSH required to activate LHR put into question the physiological relevance of this interaction. The use of heterologous chinook GTHs confirms the strong preference of each hormone for its cognate receptor. The gonadal expression pattern of the GTH receptor genes suggests that FSH may play an important role in regulating gonadal functions, not only at the early stages but also at the final stages of the male and female reproductive cycles, in addition to the LH pathway.
Endocrinology | 2010
Arianna Servili; Christèle Lethimonier; Jean-Jacques Lareyre; José Fernando López-Olmeda; F.J. Sánchez-Vázquez; Olivier Kah; José Antonio Muñoz-Cueto
With the exception of modern mammals, most vertebrate species possess two GnRH genes, GnRH-1 and GnRH-2. In addition, in many teleost fish, there is a third gene called GnRH-3. If the main function of GnRH-1 is unambiguously to stimulate gonadotropin release, the other two GnRH forms still lack clear functions. This is particularly true for the highly conserved GnRH-2 that encodes chicken GnRH-II. This GnRH variant is consistently expressed in neurons of the dorsal synencephalon in most vertebrate groups but still has no clear functions supported by anatomical, pharmacological, and physiological data. In this study performed on a perciform fish, the European sea bass, we show for the first time that the pineal organ receives GnRH-2-immunoreactive fibers originating from the synencephalic GnRH-2 neurons. This was shown through a combination of retrograde tracing and immunohistochemistry, using highly specific antibodies. Supporting the presence of GnRH-2 functional targets, RT-PCR data together with the in situ hybridization studies showed that the sea bass pineal gland strongly expressed a GnRH receptor (dlGnRHR-II-2b) with clear selectivity for GnRH-2 and, to a lesser extent, the dlGnRHR-II-1a subtype. Finally, in vitro and in vivo experiments demonstrate stimulatory effects of GnRH-2 on nocturnal melatonin secretion by the sea bass pineal organ. Altogether, these data provide, for the first time in a vertebrate species, converging evidence supporting a role of GnRH-2 in the modulation of fish pineal functions.
BMC Genomics | 2009
Antoine D. Rolland; Jean-Jacques Lareyre; Anne-Sophie Goupil; Jérôme Montfort; Marie-Jo Ricordel; Diane Esquerré; Karine Hugot; Rémi Houlgatte; Frédéric Chalmel; Florence Le Gac
BackgroundSpermatogenesis is a late developmental process that involves a coordinated expression program in germ cells and a permanent communication between the testicular somatic cells and the germ-line. Current knowledge regarding molecular factors driving male germ cell proliferation and differentiation in vertebrates is still limited and mainly based on existing data from rodents and human. Fish with a marked reproductive cycle and a germ cell development in synchronous cysts have proven to be choice models to study precise stages of the spermatogenetic development and the germ cell-somatic cell communication network. In this study we used 9K cDNA microarrays to investigate the expression profiles underlying testis maturation during the male reproductive cycle of the trout, Oncorhynchus mykiss.ResultsUsing total testis samples at various developmental stages and isolated spermatogonia, spermatocytes and spermatids, 3379 differentially expressed trout cDNAs were identified and their gene activation or repression patterns throughout the reproductive cycle were reported. We also performed a tissue-profiling analysis and highlighted many genes for which expression signals were restricted to the testes or gonads from both sexes. The search for orthologous genes in genome-sequenced fish species and the use of their mammalian orthologs allowed us to provide accurate annotations for trout cDNAs. The analysis of the GeneOntology terms therefore validated and broadened our interpretation of expression clusters by highlighting enriched functions that are consistent with known sequential events during male gametogenesis. Furthermore, we compared expression profiles of trout and mouse orthologs and identified a complement of genes for which expression during spermatogenesis was maintained throughout evolution.ConclusionA comprehensive study of gene expression and associated functions during testis maturation and germ cell differentiation in the rainbow trout is presented. The study identifies new pathways involved during spermatogonia self-renewal or rapid proliferation, meiosis and gamete differentiation, in fish and potentially in all vertebrates. It also provides the necessary basis to further investigate the hormonal and molecular networks that trigger puberty and annual testicular recrudescence in seasonally breeding species.
Gene | 2011
Aude Gautier; Florence Le Gac; Jean-Jacques Lareyre
The gonadal soma-derived factor (GSDF) belongs to the transforming growth factor-β superfamily and is conserved in teleostean fish species. Gsdf is specifically expressed in the gonads, and gene expression is restricted to the granulosa and Sertoli cells in trout and medaka. The gsdf gene expression is correlated to early testis differentiation in medaka and was shown to stimulate primordial germ cell and spermatogonia proliferation in trout. In the present study, we show that the gsdf gene localizes to a syntenic chromosomal fragment conserved among vertebrates although no gsdf-related gene is detected on the corresponding genomic region in tetrapods. We demonstrate using quantitative RT-PCR that most of the genes localized in the synteny are specifically expressed in medaka gonads. Gsdf is the only gene of the synteny with a much higher expression in the testis compared to the ovary. In contrast, gene expression pattern analysis of the gsdf surrounding genes (nup54, aff1, klhl8, sdad1, and ptpn13) indicates that these genes are preferentially expressed in the female gonads. The tissue distribution of these genes is highly similar in medaka and zebrafish, two teleostean species that have diverged more than 110 million years ago. The cellular localization of these genes was determined in medaka gonads using the whole-mount in situ hybridization technique. We confirm that gsdf gene expression is restricted to Sertoli and granulosa cells in contact with the premeiotic and meiotic cells. The nup54 gene is expressed in spermatocytes and previtellogenic oocytes. Transcripts corresponding to the ovary-specific genes (aff1, klhl8, and sdad1) are detected only in previtellogenic oocytes. No expression was detected in the gonocytes in 10 dpf embryos. In conclusion, we show that the gsdf gene localizes to a syntenic chromosomal fragment harboring evolutionary conserved genes in vertebrates. These genes are preferentially expressed in previtelloogenic oocytes, and thus, they display a different cellular localization compared to that of the gsdf gene indicating that the later gene is not co-regulated. Interestingly, our study identifies new clustered genes that are specifically expressed in previtellogenic oocytes (nup54, aff1, klhl8, sdad1).
Biology of Reproduction | 2011
Aude Gautier; Frédéric Sohm; Jean-Stéphane Joly; Florence Le Gac; Jean-Jacques Lareyre
ABSTRACT The gonadal soma-derived factor (GSDF) is a new member of the transforming growth factor beta (TGF-beta) superfamily that regulates the proliferation of the primordial germ cells (PGC) in developing embryos and spermatogonia in juvenile male trout. The gsdf transcripts are expressed in the somatic cells supporting germ cell development. In zebrafish, we show that GSDF is encoded by a single copy gene that generates polymorphic transcripts and proteins. We determined that gsdf gene expression occurs before gonadal differentiation and is restricted to the gonads. Gene expression is maintained in adult granulosa cells and Sertoli cells but decreases in the cells that are in contact with meiotic and postmeiotic germ cells. Using zebrafish transgenic lines, we demonstrate that the 2-kb proximal promoter region of the gsdf gene targets high levels of transgene expression in the Sertoli and granulosa cells, and is sufficient to mimic the temporal expression pattern of the endogenous gsdf gene from 16 days postfertilization onward. We identified within the first 500 bp evolutionarily conserved DNA motifs that may be involved in Sertoli and granulosa cell-specific expression. However, the 2-kb proximal promoter region failed to drive efficient expression of the transgene in the gonads in four transgenic medaka lines. We propose that the proximal promoter region can be used to target candidate gene deregulation in zebrafish granulosa and Sertoli cells. Furthermore, the green fluorescent protein-expressing zebrafish lines produced in the present study are new valuable models for cell lineage tracing during sex differentiation and gametogenesis.