Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jean-Luc Guillaume is active.

Publication


Featured researches published by Jean-Luc Guillaume.


Nature Genetics | 2012

Rare MTNR1B variants impairing melatonin receptor 1B function contribute to type 2 diabetes

Amélie Bonnefond; Nathalie Clement; Katherine Fawcett; Loic Yengo; Emmanuel Vaillant; Jean-Luc Guillaume; Aurélie Dechaume; Felicity Payne; Ronan Roussel; Sébastien Czernichow; Serge Hercberg; Samy Hadjadj; Beverley Balkau; Michel Marre; Olivier Lantieri; Claudia Langenberg; Nabila Bouatia-Naji; Guillaume Charpentier; Martine Vaxillaire; Ghislain Rocheleau; Nicholas J. Wareham; Robert Sladek; Mark I. McCarthy; Christian Dina; Inês Barroso; Ralf Jockers; Philippe Froguel

Genome-wide association studies have revealed that common noncoding variants in MTNR1B (encoding melatonin receptor 1B, also known as MT2) increase type 2 diabetes (T2D) risk. Although the strongest association signal was highly significant (P < 1 × 10−20), its contribution to T2D risk was modest (odds ratio (OR) of ∼1.10–1.15). We performed large-scale exon resequencing in 7,632 Europeans, including 2,186 individuals with T2D, and identified 40 nonsynonymous variants, including 36 very rare variants (minor allele frequency (MAF) <0.1%), associated with T2D (OR = 3.31, 95% confidence interval (CI) = 1.78–6.18; P = 1.64 × 10−4). A four-tiered functional investigation of all 40 mutants revealed that 14 were non-functional and rare (MAF < 1%), and 4 were very rare with complete loss of melatonin binding and signaling capabilities. Among the very rare variants, the partial- or total-loss-of-function variants but not the neutral ones contributed to T2D (OR = 5.67, CI = 2.17–14.82; P = 4.09 × 10−4). Genotyping the four complete loss-of-function variants in 11,854 additional individuals revealed their association with T2D risk (8,153 individuals with T2D and 10,100 controls; OR = 3.88, CI = 1.49–10.07; P = 5.37 × 10−3). This study establishes a firm functional link between MTNR1B and T2D risk.


The EMBO Journal | 2006

The orphan GPR50 receptor specifically inhibits MT1 melatonin receptor function through heterodimerization

Angélique Levoye; Julie Dam; Mohammed A. Ayoub; Jean-Luc Guillaume; Cyril Couturier; Philippe Delagrange; Ralf Jockers

One‐third of the ∼400 nonodorant G protein‐coupled receptors (GPCRs) are still orphans. Although a considerable number of these receptors are likely to transduce cellular signals in response to ligands that remain to be identified, they may also have ligand‐independent functions. Several members of the GPCR family have been shown to modulate the function of other receptors through heterodimerization. We show that GPR50, an orphan GPCR, heterodimerizes constitutively and specifically with MT1 and MT2 melatonin receptors, using biochemical and biophysical approaches in intact cells. Whereas the association between GPR50 and MT2 did not modify MT2 function, GPR50 abolished high‐affinity agonist binding and G protein coupling to the MT1 protomer engaged in the heterodimer. Deletion of the large C‐terminal tail of GPR50 suppressed the inhibitory effect of GPR50 on MT1 without affecting heterodimerization, indicating that this domain regulates the interaction of regulatory proteins to MT1. Pairing orphan GPCRs to potential heterodimerization partners might be of clinical importance and may become a general strategy to better understand the function of orphan GPCRs.


EMBO Reports | 2006

Do orphan G-protein-coupled receptors have ligand-independent functions? New insights from receptor heterodimers

Angélique Levoye; Julie Dam; Mohammed A. Ayoub; Jean-Luc Guillaume; Ralf Jockers

G‐protein‐coupled receptors (GPCRs) are important drug targets and are involved in virtually every biological process. However, there are still more than 140 orphan GPCRs, and deciphering their function remains a priority for fundamental and clinical research. Research on orphan GPCRs has concentrated mainly on the identification of their natural ligands, whereas recent data suggest additional ligand‐independent functions for these receptors. This emerging concept is connected with the observation that orphan GPCRs can heterodimerize with GPCRs that have identified ligands, and by so doing regulate the function of the latter. Pairing orphan GPCRs with their potential heterodimerization partners will have a major impact on our understanding of the extraordinary diversity offered by GPCR heterodimerization and, in addition, will constitute a novel strategy to elucidate the function of orphan receptors that needs to be added to the repertoire of ‘deorphanization’ strategies.


Molecular & Cellular Proteomics | 2007

Purification and Identification of G Protein-coupled Receptor Protein Complexes under Native Conditions

Avais M. Daulat; Pascal Maurice; Carine Froment; Jean-Luc Guillaume; Cédric Broussard; Bernard Monsarrat; Philippe Delagrange; Ralf Jockers

G protein-coupled receptors (GPCRs) constitute the largest family of membrane receptors and are of major therapeutic importance. The identification of GPCR-associated proteins is an important step toward a better understanding of these receptors. However, current methods are not satisfying as only isolated receptor domains (intracellular loops or carboxyl-terminal tails) can be used as “bait.” We report here a method based on tandem affinity purification coupled to mass spectrometry that overcomes these limitations as the entire receptor is used to identify protein complexes formed in living mammalian cells. The human MT1 and MT2 melatonin receptors were chosen as model GPCRs. Both receptors were tagged with the tandem affinity purification tag at their carboxyl-terminal tails and expressed in human embryonic kidney 293 cells. Receptor solubilization and purification conditions were optimized. The method was validated by the co-purification of Gi proteins, which are well known GPCR interaction partners but which are difficult to identify with current protein-protein interaction assays. Several new and functionally relevant MT1- and MT2-associated proteins were identified; some of them were common to both receptors, and others were specific for each subtype. Taken together, our protocol allowed for the first time the purification of GPCR-associated proteins under native conditions in quantities suitable for mass spectrometry analysis.


Journal of Biological Chemistry | 2008

The PDZ Protein Mupp1 Promotes Gi Coupling and Signaling of the Mt1 Melatonin Receptor

Jean-Luc Guillaume; Avais M. Daulat; Pascal Maurice; Angélique Levoye; Martine Migaud; Lena Brydon; Benoît Malpaux; Catherine Borg-Capra; Ralf Jockers

Intracellular signaling events are often organized around PDZ (PSD-95/Drosophila Disc large/ZO-1 homology) domain-containing scaffolding proteins. The ubiquitously expressed multi-PDZ protein MUPP1, which is composed of 13 PDZ domains, has been shown to interact with multiple viral and cellular proteins and to play important roles in receptor targeting and trafficking. In this study, we show that MUPP1 binds to the G protein-coupled MT1 melatonin receptor and directly regulates its Gi-dependent signal transduction. Structural determinants involved in this interaction are the PDZ10 domain of MUPP1 and the valine of the canonical class III PDZ domain binding motif DSV of the MT1 carboxyl terminus. This high affinity interaction (Kd ∼ 4 nm), which is independent of MT1 activation, occurs in the ovine pars tuberalis of the pituitary expressing both proteins endogenously. Although the disruption of the MT1/MUPP1 interaction has no effect on the subcellular localization, trafficking, or degradation of MT1, it destabilizes the interaction between MT1 and Gi and abolishes Gi-mediated signaling of MT1. Our findings highlight a previously unappreciated role of PDZ proteins in promoting G protein coupling to receptors.


Science Signaling | 2013

Heteromeric MT1/MT2 Melatonin Receptors Modulate Photoreceptor Function

Kenkichi Baba; Abla Benleulmi-Chaachoua; Anne-Sophie Journé; Maud Kamal; Jean-Luc Guillaume; Sébastien Dussaud; Florence Gbahou; Katia Yettou; Cuimei Liu; Susana Contreras-Alcantara; Ralf Jockers; Gianluca Tosini

Melatonin stimulates a heteromeric G protein–coupled receptor to modulate the eye’s response to light flashes at night. Flash Response In the retina, melatonin increases photoreceptor sensitivity to light at night, but not in mice deficient in the melatonin receptor MT1. Baba et al. found that two melatonin receptors, the G protein (heterotrimeric guanine nucleotide–binding protein)–coupled receptors (GPCRs) MT1 and MT2, were both present in the photoreceptor cells of mice, and, when coexpressed in cultured cells, these receptors formed homomeric and heteromeric complexes. Mice deficient in MT2 or expressing a mutant form of MT2 failed to respond to melatonin, suggesting that MT1 and MT2 may function as a heteromeric complex to mediate this response. By testing the response in the presence of various pharmacological agents, melatonin mediated its effect on photoreceptor responses in vivo through the inositol trisphosphate to protein kinase C pathway. Thus, this study delineates a pathway by which melatonin affects vision and provides in vivo evidence for functional GPCR heteromers. The formation of G protein (heterotrimeric guanine nucleotide–binding protein)–coupled receptor (GPCR) heteromers enables signaling diversification and holds great promise for improved drug selectivity. Most studies of these oligomerization events have been conducted in heterologous expression systems, and in vivo validation is lacking in most cases, thus questioning the physiological significance of GPCR heteromerization. The melatonin receptors MT1 and MT2 exist as homomers and heteromers when expressed in cultured cells. We showed that melatonin MT1/MT2 heteromers mediated the effect of melatonin on the light sensitivity of rod photoreceptors in mice. This effect of melatonin involved activation of the heteromer-specific phospholipase C and protein kinase C (PLC/PKC) pathway and was abolished in MT1−/− or MT2−/− mice, as well as in mice overexpressing a nonfunctional MT2 mutant that interfered with the formation of functional MT1/MT2 heteromers in photoreceptor cells. Not only does this study establish an essential role of melatonin receptor heteromers in retinal function, it also provides in vivo support for the physiological importance of GPCR heteromerization. Thus, the MT1/MT2 heteromer complex may provide a specific pharmacological target to improve photoreceptor function.


PLOS ONE | 2010

Identification of pathway-biased and deleterious melatonin receptor mutants in autism spectrum disorders and in the general population

Pauline Chaste; Nathalie Clement; Oriane Mercati; Jean-Luc Guillaume; Richard Delorme; Hany Goubran Botros; Cécile Pagan; Samuel Périvier; Isabelle Scheid; Gudrun Nygren; Henrik Anckarsäter; Maria Råstam; Ola Ståhlberg; Carina Gillberg; Emilie Serrano; Nathalie Lemière; Jean-Marie Launay; Marie Christine Mouren-Simeoni; Marion Leboyer; Christopher Gillberg; Ralf Jockers; Thomas Bourgeron

Melatonin is a powerful antioxidant and a synchronizer of many physiological processes. Alteration of the melatonin pathway has been reported in circadian disorders, diabetes and autism spectrum disorders (ASD). However, very little is known about the genetic variability of melatonin receptors in humans. Here, we sequenced the melatonin receptor MTNR1A and MTNR1B, genes coding for MT1 and MT2 receptors, respectively, in a large panel of 941 individuals including 295 patients with ASD, 362 controls and 284 individuals from different ethnic backgrounds. We also sequenced GPR50, coding for the orphan melatonin-related receptor GPR50 in patients and controls. We identified six non-synonymous mutations for MTNR1A and ten for MTNR1B. The majority of these variations altered receptor function. Particularly interesting mutants are MT1-I49N, which is devoid of any melatonin binding and cell surface expression, and MT1-G166E and MT1-I212T, which showed severely impaired cell surface expression. Of note, several mutants possessed pathway-selective signaling properties, some preferentially inhibiting the adenylyl cyclase pathway, others preferentially activating the MAPK pathway. The prevalence of these deleterious mutations in cases and controls indicates that they do not represent major risk factor for ASD (MTNR1A case 3.6% vs controls 4.4%; MTNR1B case 4.7% vs 3% controls). Concerning GPR50, we detected a significant association between ASD and two variations, Δ502–505 and T532A, in affected males, but it did not hold up after Bonferonni correction for multiple testing. Our results represent the first functional ascertainment of melatonin receptors in humans and constitute a basis for future structure-function studies and for interpreting genetic data on the melatonin pathway in patients.


The EMBO Journal | 2010

Molecular organization and dynamics of the melatonin MT1 receptor/RGS20/Gi protein complex reveal asymmetry of receptor dimers for RGS and Gi coupling

Pascal Maurice; Avais M. Daulat; Rostislav Turecek; Klara Ivankova-Susankova; Francesco Zamponi; Maud Kamal; Nathalie Clement; Jean-Luc Guillaume; Bernhard Bettler; Céline Galés; Philippe Delagrange; Ralf Jockers

Functional asymmetry of G‐protein‐coupled receptor (GPCR) dimers has been reported for an increasing number of cases, but the molecular architecture of signalling units associated to these dimers remains unclear. Here, we characterized the molecular complex of the melatonin MT1 receptor, which directly and constitutively couples to Gi proteins and the regulator of G‐protein signalling (RGS) 20. The molecular organization of the ternary MT1/Gi/RGS20 complex was monitored in its basal and activated state by bioluminescence resonance energy transfer between probes inserted at multiple sites of the complex. On the basis of the reported crystal structures of Gi and the RGS domain, we propose a model wherein one Gi and one RGS20 protein bind to separate protomers of MT1 dimers in a pre‐associated complex that rearranges upon agonist activation. This model was further validated with MT1/MT2 heterodimers. Collectively, our data extend the concept of asymmetry within GPCR dimers, reinforce the notion of receptor specificity for RGS proteins and highlight the advantage of GPCRs organized as dimers in which each protomer fulfils its specific task by binding to different GPCR‐interacting proteins.


Journal of Pineal Research | 2011

Genetic variations of the melatonin pathway in patients with attention-deficit and hyperactivity disorders.

Pauline Chaste; Nathalie Clement; Hany Goubran Botros; Jean-Luc Guillaume; Marina Konyukh; Cécile Pagan; Isabelle Scheid; Gudrun Nygren; Henrik Anckarsäter; Maria Råstam; Ola Ståhlberg; I. Carina Gillberg; Jonas Melke; Richard Delorme; Claire S. Leblond; Roberto Toro; Guillaume Huguet; Fabien Fauchereau; Christelle M. Durand; Lydia Boudarene; Emilie Serrano; Nathalie Lemière; Jean-Marie Launay; Marion Leboyer; Ralf Jockers; Christopher Gillberg; Thomas Bourgeron

Abstract:  Melatonin is a powerful antioxidant and a synchronizer of many physiological processes. Alteration in melatonin signaling has been reported in a broad range of diseases, but little is known about the genetic variability of this pathway in humans. Here, we sequenced all the genes of the melatonin pathway –AA‐NAT, ASMT, MTNR1A, MTNR1B and GPR50 – in 321 individuals from Sweden including 101 patients with attention‐deficit/hyperactivity disorder (ADHD) and 220 controls from the general population. We could find several damaging mutations in patients with ADHD, but no significant enrichment compared with the general population. Among these variations, we found a splice site mutation in ASMT (IVS5+2T>C) and one stop mutation in MTNR1A (Y170X) – detected exclusively in patients with ADHD – for which biochemical analyses indicated that they abolish the activity of ASMT and MTNR1A. These genetic and functional results represent the first comprehensive ascertainment of melatonin signaling deficiency in ADHD.


Advances in pharmacology | 2011

GPCR-interacting proteins, major players of GPCR function.

Pascal Maurice; Jean-Luc Guillaume; Abla Benleulmi-Chaachoua; Avais M. Daulat; Maud Kamal; Ralf Jockers

G protein-coupled receptors (GPCRs) are, with approximately 800 members, among the most abundant membrane proteins in humans. They are responding to a plethora of ligands and are involved in the transmission of extracellular signals inside the cell. GPCRs are synthesized in the endoplasmatic reticulum and are then transported to the cell surface where they are typically activated. Receptor activation triggers several processes such as signaling and receptor endocytosis. Along their life cycle, GPCRs are accompanied by a range of specialized GPCR-interacting proteins (GIPs) to assist nascent receptors in proper folding, to target them to the appropriate subcellular compartments and to fulfill their signaling tasks. Differential expression of GIPs and rapid alterations of GPCR/GIP interaction networks are efficient means to regulate GPCR function in a tissue-specific and spatiotemporal manner to trigger appropriate cellular responses. Interfering with a GPCR/GIP interaction might become a new strategy for specific therapeutic intervention. This chapter will focus on the importance of GIPs along the GPCR life cycle and discuss the dynamics and molecular organization of GPCR/GIP complexes.

Collaboration


Dive into the Jean-Luc Guillaume's collaboration.

Top Co-Authors

Avatar

Ralf Jockers

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Philippe Delagrange

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abla Benleulmi-Chaachoua

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Angeliki Karamitri

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Julie Dam

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gianluca Tosini

Morehouse School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge