Jean-Luc Verdeil
Centre de coopération internationale en recherche agronomique pour le développement
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jean-Luc Verdeil.
Nature Methods | 2010
Romain Fernandez; Pradeep Das; Vincent Mirabet; Eric Moscardi; Jan Traas; Jean-Luc Verdeil; Grégoire Malandain; Christophe Godin
Quantitative information on growing organs is required to better understand morphogenesis in both plants and animals. However, detailed analyses of growth patterns at cellular resolution have remained elusive. We developed an approach, multiangle image acquisition, three-dimensional reconstruction and cell segmentation–automated lineage tracking (MARS-ALT), in which we imaged whole organs from multiple angles, computationally merged and segmented these images to provide accurate cell identification in three dimensions and automatically tracked cell lineages through multiple rounds of cell division during development. Using these methods, we quantitatively analyzed Arabidopsis thaliana flower development at cell resolution, which revealed differential growth patterns of key regions during early stages of floral morphogenesis. Lastly, using rice roots, we demonstrated that this approach is both generic and scalable.
Plant Cell Reports | 2000
Estelle Jaligot; Alain Rival; Thierry Beulé; Stéphane Dussert; Jean-Luc Verdeil
Elaeis guineensis Jacq.) currently hampers the scaling-up of clonal plant production. In order to investigate the relationship between the “mantled” somaclonal variant and possible alterations in genomic DNA methylation rate, two complementary approaches have been used. HPLC quantification of relative amounts of 5-methyl-deoxycytidine has shown that global methylation in leaf DNA of abnormal regenerants is 0.5–2.5% lower than in their normal counterparts (20.8% vs 22%, respectively). When comparing nodular compact calli and fast growing calli, yielding respectively 5% and 100% of “mantled” plantlets, this decrease was up to 4.5% (from 23.2 to 18.7%). An alternative method, the SssI-methylase accepting assay, based on the enzymatic saturation of CG sites with methyl groups, gave convergent results. This work demonstrates that a correlation exists between DNA hypomethylation and the “mantled” somaclonal variation in oil palm.
Rice | 2009
Julia Rebouillat; Anne Dievart; Jean-Luc Verdeil; Jacques Escoute; Guenter Giese; Jean-Christophe Breitler; Pascal Gantet; Sandra Espeout; Emmanuel Guiderdoni; Christophe Périn
Plant roots have a large range of functions, including acquisition of water and nutrients, as well as structural support. Dissecting the genetic and molecular mechanisms controlling rice root development is critical for the development of new rice ideotypes that are better adapted to adverse conditions and for the production of sustainably achieved rice yield potential. Most knowledge regarding the gene networks involved in root development has been accumulated in the model dicotyledon plant species Arabidopsis thaliana. Rice, the model monocotyledon species, presents several singularities compared to A. thaliana, including a root architecture characterized by a fibrous root system comprising five types of embryonic and postembryonic roots. The anatomy and morphology of the rice root system, which is typical for a cereal, differs from that of A. thaliana, for instance, by the presence of a lysigenous cortex and additional cell layers compared to the dicotyledon model. Moreover, the structure and functions of the root apical meristem (RAM) of rice are distinct from those of A. thaliana. Recently, several rice root mutants have been identified via forward or reverse genetics, and these will aid in forming hypothesis to characterize either the divergence or conservation of genetic pathways relative to A. thaliana. Furthermore, these mutants will help to identify key genes in rice roots that may be missing in A. thaliana. This review summarizes both classical and recent data concerning the molecular genetics of rice root development, including root anatomy and morphology, RAM structure, RAM patterning, and root mutants.
Plant Physiology | 2009
Mehdi Jabnoune; Sandra Espeout; Delphine Mieulet; Jean-Luc Verdeil; Geneviève Conejero; Alonso Rodríguez-Navarro; Hervé Sentenac; Emmanuel Guiderdoni; Chedly Abdelly; Anne-Aliénor Véry
Plant growth under low K+ availability or salt stress requires tight control of K+ and Na+ uptake, long-distance transport, and accumulation. The family of membrane transporters named HKT (for High-Affinity K+ Transporters), permeable either to K+ and Na+ or to Na+ only, is thought to play major roles in these functions. Whereas Arabidopsis (Arabidopsis thaliana) possesses a single HKT transporter, involved in Na+ transport in vascular tissues, a larger number of HKT transporters are present in rice (Oryza sativa) as well as in other monocots. Here, we report on the expression patterns and functional properties of three rice HKT transporters, OsHKT1;1, OsHKT1;3, and OsHKT2;1. In situ hybridization experiments revealed overlapping but distinctive and complex expression patterns, wider than expected for such a transporter type, including vascular tissues and root periphery but also new locations, such as osmocontractile leaf bulliform cells (involved in leaf folding). Functional analyses in Xenopus laevis oocytes revealed striking diversity. OsHKT1;1 and OsHKT1;3, shown to be permeable to Na+ only, are strongly different in terms of affinity for this cation and direction of transport (inward only or reversible). OsHKT2;1 displays diverse permeation modes, Na+-K+ symport, Na+ uniport, or inhibited states, depending on external Na+ and K+ concentrations within the physiological concentration range. The whole set of data indicates that HKT transporters fulfill distinctive roles at the whole plant level in rice, each system playing diverse roles in different cell types. Such a large diversity within the HKT transporter family might be central to the regulation of K+ and Na+ accumulation in monocots.
Plant Cell Reports | 1994
Jean-Luc Verdeil; C. Huet; Frédérique Grosdemange; Jacqueline Buffard-Morel
Immature inflorescences of coconut belonging to three different genotypes were cultured on a solid medium supplemented with activated charcoal (2%) and a range of 2,4-dichlorophenoxyacetic acid (2,4-D) concentrations (from 1.5 to 3.5 × 10−4M). Globular white callus formed from immature floral meristems, depending on inflorescence age and 2,4-D concentration. Acquisition of embryogenic competence is described histologically. Somatic embryos presented a functional bipolar organization with a completely differentiated shoot meristem which is reported here for the first time in coconut tissue culture. Embryo maturation allowed reliable plant regeneration of this in vitro recalcitrant species. Details are given of exogenous hormonal requirements for the acquisition of embryogenic competence and embryo maturation.
Journal of Experimental Botany | 2011
Thorsten Knipfer; Matthieu Besse; Jean-Luc Verdeil; Wieland Fricke
It is not known to what degree aquaporin-facilitated water uptake differs between root developmental regions and types of root. The aim of this study was to measure aquaporin-dependent water flow in the main types of root and root developmental regions of 14- to 17-d-old barley plants and to identify candidate aquaporins which mediate this flow. Water flow at root level was related to flow at cell and plant level. Plants were grown hydroponically. Hydraulic conductivity of cells and roots was determined with a pressure probe and through exudation, respectively, and whole-plant water flow (transpiration) determined gravimetrically in response to the commonly used aquaporin inhibitor HgCl2. Expression of aquaporins was analysed by real-time PCR and in situ hybridization. Hydraulic conductivity of cortical cells in seminal roots was largest in lateral roots; it was smallest in the fully mature zone and intermediate in the not fully mature ‘transition’ zone along the main root axis. Adventitious roots displayed an even higher (3- to 4-fold) cortical cell hydraulic conductivity in the transition zone. This coincided with 3- to 4-fold higher expression of three aquaporins (HvPIP2;2, HvPIP2;5, HvTIP1:1). These were expressed (also) in cortical tissue. The largest inhibition of water flow (83–95%) in response to HgCl2 was observed in cortical cells. Water flow through roots and plants was reduced less (40–74%). It is concluded that aquaporins contribute substantially to root water uptake in 14- to 17-d-old barley plants. Most water uptake occurs through lateral roots. HvPIP2;5, HvPIP2;2, and HvTIP1;1 are prime candidates to mediate water flow in cortical tissue.
Plant Physiology | 2010
Francine Perrine-Walker; Patrick Doumas; Mikaël Lucas; Virginie Vaissayre; Nicholas Beauchemin; Leah R. Band; Jérôme Chopard; Geneviève Conejero; Benjamin Péret; John R. King; Jean-Luc Verdeil; Valérie Hocher; Claudine Franche; Malcolm J. Bennett; Louis S. Tisa; Laurent Laplaze
Actinorhizal symbioses are mutualistic interactions between plants and the soil bacteria Frankia that lead to the formation of nitrogen-fixing root nodules. Little is known about the signaling mechanisms controlling the different steps of the establishment of the symbiosis. The plant hormone auxin has been suggested to play a role. Here we report that auxin accumulates within Frankia-infected cells in actinorhizal nodules of Casuarina glauca. Using a combination of computational modeling and experimental approaches, we establish that this localized auxin accumulation is driven by the cell-specific expression of auxin transporters and by Frankia auxin biosynthesis in planta. Our results indicate that the plant actively restricts auxin accumulation to Frankia-infected cells during the symbiotic interaction.
Plant Journal | 2010
Teresa Cuéllar; François Pascaud; Jean-Luc Verdeil; Laurent Torregrosa; Anne-Françoise Adam-Blondon; Jean-Baptiste Thibaud; Hervé Sentenac; Isabelle Gaillard
Grapevine (Vitis vinifera), the genome sequence of which has recently been reported, is considered as a model species to study fleshy fruit development and acid fruit physiology. Grape berry acidity is quantitatively and qualitatively affected upon increased K(+) accumulation, resulting in deleterious effects on fruit (and wine) quality. Aiming at identifying molecular determinants of K(+) transport in grapevine, we have identified a K(+) channel, named VvK1.1, from the Shaker family. In silico analyses indicated that VvK1.1 is the grapevine counterpart of the Arabidopsis AKT1 channel, known to dominate the plasma membrane inward conductance to K(+) in root periphery cells, and to play a major role in K(+) uptake from the soil solution. VvK1.1 shares common functional properties with AKT1, such as inward rectification (resulting from voltage sensitivity) or regulation by calcineurin B-like (CBL)-interacting protein kinase (CIPK) and Ca(2+)-sensing CBL partners (shown upon heterologous expression in Xenopus oocytes). It also displays distinctive features such as activation at much more negative membrane voltages or expression strongly sensitive to drought stress and ABA (upregulation in aerial parts, downregulation in roots). In roots, VvK1.1 is mainly expressed in cortical cells, like AKT1. In aerial parts, VvK1.1 transcripts were detected in most organs, with expression levels being the highest in the berries. VvK1.1 expression in the berry is localized in the phloem vasculature and pip teguments, and displays strong upregulation upon drought stress, by about 10-fold.VvK1.1 could thus play a major role in K(+) loading into berry tissues, especially upon drought stress.
BMC Plant Biology | 2011
Alessandra F Ribas; Eveline Dechamp; Anthony Champion; Benoît Bertrand; Marie-Christine Combes; Jean-Luc Verdeil; Fabienne Lapeyre; Philippe Lashermes; Hervé Etienne
BackgroundFollowing genome sequencing of crop plants, one of the main challenges today is determining the function of all the predicted genes. When gene validation approaches are used for woody species, the main obstacle is the low recovery rate of transgenic plants from elite or commercial cultivars. Embryogenic calli have frequently been the target tissue for transformation, but the difficulty in producing or maintaining embryogenic tissues is one of the main problems encountered in genetic transformation of many woody plants, including Coffea arabica.ResultsWe identified the conditions required for successful long-term proliferation of embryogenic cultures in C. arabica and designed a highly efficient and reliable Agrobacterium tumefaciens-mediated transformation method based on these conditions. The transformation protocol with LBA1119 harboring pBin 35S GFP was established by evaluating the effect of different parameters on transformation efficiency by GFP detection. Using embryogenic callus cultures, co-cultivation with LBA1119 OD600 = 0.6 for five days at 20 °C enabled reproducible transformation. The maintenance conditions for the embryogenic callus cultures, particularly a high auxin to cytokinin ratio, the age of the culture (optimum for 7-10 months of proliferation) and the use of a yellow callus phenotype, were the most important factors for achieving highly efficient transformation (> 90%). At the histological level, successful transformation was related to the number of proembryogenic masses present. All the selected plants were proved to be transformed by PCR and Southern blot hybridization.ConclusionMost progress in increasing transformation efficiency in coffee has been achieved by optimizing the production conditions of embryogenic cultures used as target tissues for transformation. This is the first time that a strong positive effect of the age of the culture on transformation efficiency was demonstrated. Our results make Agrobacterium-mediated transformation of embryogenic cultures a viable and useful tool both for coffee breeding and for the functional analysis of agronomically important genes.
Planta | 2008
Laurence Alemanno; Martine Devic; Nicolas Niemenak; Christine Sanier; Jocelyne Guilleminot; Mariannick Rio; Jean-Luc Verdeil; Pascal Montoro
Theobroma cacao L., an economically important crop for developing countries, can be experimentally propagated by somatic embryogenesis. Because of their potential roles in embryogenesis, a gene candidate strategy was initiated to find gene homologues of the members of the leafy cotyledon family of transcription factors. A homologue of the leafy cotyledon1-like gene, that encodes the HAP 3 subunit of the CCAAT box-binding factor, was found in the cocoa genome (TcL1L). The translated peptide shared a high amino acid sequence identity with the homologous genes of Arabidopsis thaliana, Phaseolus coccineus and Helianthus annuus. TcL1L transcripts mainly accumulated in young and immature zygotic embryos, and, to a lesser extent, in young and immature somatic embryos. In situ hybridization specified the localization of the transcripts as being mainly in embryonic cells of young embryos, the meristematic cells of the shoot and root apex of immature embryos, and in the protoderm and epidermis of young and immature embryos, either zygotic or somatic. Non-embryogenic explants did not show TcL1L expression. Ectopic expression of the TcL1L gene could partially rescue the Arabidopsislec1 mutant phenotype, suggesting a similarity of function in zygotic embryogenesis.
Collaboration
Dive into the Jean-Luc Verdeil's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputsCentre de coopération internationale en recherche agronomique pour le développement
View shared research outputsCentre de coopération internationale en recherche agronomique pour le développement
View shared research outputsCentre de coopération internationale en recherche agronomique pour le développement
View shared research outputsCentre de coopération internationale en recherche agronomique pour le développement
View shared research outputs