Jean-Marc Bertho
Institut de radioprotection et de sûreté nucléaire
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jean-Marc Bertho.
International Journal of Radiation Biology | 1997
Marie-Hélène Gaugler; Claire Squiban; A. van der Meeren; Jean-Marc Bertho; Marie Vandamme; Marc-André Mouthon
Adhesion molecules play a key role in cellular traffic through vascular endothelium, in particular during the inflammatory response when leukocytes migrate from blood into tissues. Since inflammation is one of the major consequences of radiation injury, we investigated the effect of ionizing radiation on cell-surface expression of the intercellular adhesion molecule-1 (ICAM-1), the vascular cell adhesion molecule-1 (VCAM-1) and E-selectin in cultured human umbilical vein endothelial cells (HUVEC). Flow cytometry performed on irradiated HUVEC revealed both a time- (from 2 to 10 days) and dose- (from 2 to 10 Gy) dependent up-regulation of basal expression of ICAM-1, and no induction of VCAM-1 or E-selectin. The radiation-induced increase in ICAM-1 expression on HUVEC was correlated with augmented adhesion of neutrophils on irradiated endothelial cells. Interleukin-6 (Il-6) or other soluble factors released by irradiation were not involved in the enhanced ICAM-1 expression by irradiation. Northern blot analysis showed an overexpression of ICAM-1 mRNA from 1 to 6 days after a 10 Gy exposure. Our data suggest that ICAM-1 participates in the radiation-induced inflammatory reaction of the endothelium.
Radiation Research | 2008
Jean-Marc Bertho; Laurence Roy; M. Souidi; Marc Benderitter; Yann Gueguen; Jean-Jacques Lataillade; Marie Prat; T. Fagot; T. De Revel; Patrick Gourmelon
Abstract Bertho, J. M., Roy, L., Souidi, M., Benderitter, M., Gueguen, Y., Lataillade, J. J., Prat, M., Fagot, T., De Revel, T. and Gourmelon, P. New Biological Indicators to Evaluate and Monitor Radiation-Induced Damage: An Accident Case Report. Radiat. Res. 169, 543–550 (2008). The aim of this work was to use several new biological indicators to evaluate damage to the main physiological systems in a victim exposed accidentally to ionizing radiation. Blood samples were used for biological dosimetry and for measurement of the plasma concentrations of several molecules: Flt3 ligand to assess the hematopoietic system, citrulline as an indicator of the digestive tract, and several oxysterols as lipid metabolism and vascular markers. The cytogenetic evaluation estimated the dose to the victim to be between 4.2 and 4.8 Gy, depending on the methodology used. Monitoring the Flt3 ligand demonstrated the severity of bone marrow aplasia. In contrast, the citrulline concentration showed the absence of gastrointestinal damage. Variations in oxysterol concentrations suggested radiation-induced damage to the liver and the cardiovascular system. These results were correlated with those from classic biochemical markers, which demonstrated severe damage to the hematopoietic system and suggested the appearance of subclinical damage to the liver and cardiovascular system. These results demonstrate for the first time the importance of a multiparameter biological approach in the evaluation of radiation damage after accidental irradiation.
Toxicological Sciences | 2008
Hanaâ Berradi; Jean-Marc Bertho; Nicolas Dudoignon; André Mazur; Line Grandcolas; C. Baudelin; Stéphane Grison; Philippe Voisin; Patrick Gourmelon; Isabelle Dublineau
Kidney disease is a frequent consequence of heavy metal exposure and renal anemia occurs secondarily to the progression of kidney deterioration into chronic disease. In contrast, little is known about effects on kidney of chronic exposure to low levels of depleted uranium (DU). Study was performed with rats exposed to DU at 40 mg/l by chronic ingestion during 9 months. In the present work, a approximately 20% reduction in red blood cell (RBC) count was observed after DU exposure. Hence, three hypotheses were tested to determinate origin of RBC loss: (1) reduced erythropoiesis, (2) increased RBC degradation, and/or (3) kidney dysfunction. Erythropoiesis was not reduced after exposure to DU as revealed by erythroid progenitors, blood Flt3 ligand and erythropoietin (EPO) blood and kidney levels. Concerning messenger RNA (mRNA) and protein levels of spleen iron recycling markers from RBC degradation (DMT1 [divalent metal transporter 1], iron regulated protein 1, HO1, HO2 [heme oxygenase 1 and 2], cluster of differentiation 36), increase in HO2 and DMT1 mRNA level was induced after chronic exposure to DU. Kidneys of DU-contaminated rats had more frequently high grade tubulo-interstitial and glomerular lesions, accumulated iron more frequently and presented more apoptotic cells. In addition, chronic exposure to DU induced increased gene expression of ceruloplasmin (x12), of DMT1 (x2.5), and decreased mRNA levels of erythropoietin receptor (x0.2). Increased mRNA level of DMT1 was associated to decreased protein level (x0.25). To conclude, a chronic ingestion of DU leads mainly to kidney deterioration that is probably responsible for RBC count decrease in rats. Spleen erythropoiesis and molecules involved in erythrocyte degradation were also modified by chronic DU exposure.
Mediators of Inflammation | 1997
A. Van Der Meeren; Jean-Marc Bertho; Marie Vandamme; Marie-Hélène Gaugler
Irradiation exposure is known to induce an inflammatory reaction. Endothelial cells play a crucial role both in the inflammatory process and in radiation damage. Therefore, supernatants and cell lysates of 60Co-irradiated human umbilical vein endothelial cells (HUVEC) have been assessed for the presence of pro-inflammatory cytokines. After gamma irradiation, interleukin (IL)-1α, IL-1β and tumor necrosis factor (TNF)-α remained undetectable in both cell supernatants and cell lysates. However, a dose-dependent increase in the production of IL-6 and IL-8 has been demonstrated up to 6 days after exposure. These data indicate that the pro-inflammatory cytokines IL-6 and IL-8 may be involved in the inflammatory response of vascular endothelium induced by exposure to ionizing radiation.
Radiation Research | 2005
Jean-Marc Bertho; Marie Prat; Johanna Frick; Christelle Demarquay; Marie-Hélène Gaugler; Nicolas Dudoignon; I. Clairand; Alain Chapel; Norbert-Claude Gorin; Dominique Thierry; Patrick Gourmelon
Abstract Bertho, J-M., Prat, M., Frick, J., Demarquay, C., Gaugler, M-H., Dudoignon, N., Clairand, I., Chapel, A., Gorin, N-C., Thierry, D. and Gourmelon, P. Application of Autologous Hematopoietic Cell Therapy to a Nonhuman Primate Model of Heterogeneous High-Dose Irradiation. Radiat. Res. 163, 557– 570 (2005). We developed a model of heterogeneous irradiation in a nonhuman primate to test the feasibility of autologous hematopoietic cell therapy for the treatment of radiation accident victims. Animals were irradiated either with 8 Gy to the body with the right arm shielded to obtain 3.4 Gy irradiation or with 10 Gy total body and 4.4 Gy to the arm. Bone marrow mononuclear cells were harvested either before irradiation or after irradiation from an underexposed area of the arm and were expanded in previously defined culture conditions. We showed that hematopoietic cells harvested after irradiation were able to expand and to engraft when reinjected 7 days after irradiation. Recovery was observed in all 8-Gy-irradiated animals, and evidence for a partial recovery was observed in 10-Gy-irradiated animals. However, in 10-Gy-irradiated animals, digestive disease was observed from day 16 and resulted in the death of two animals. Immunohistological examinations showed damage to the intestine, lungs, liver and kidneys and suggested radiation damage to endothelial cells. Overall, our results provide evidence that such an in vivo model of heterogeneous irradiation may be representative of accidental radiation exposures and may help to define the efficacy of therapeutic interventions such as autologous cell therapy in radiation accident victims.
Stem Cells and Development | 2008
Moubarak Mouiseddine; Noëlle Mathieu; Johanna Stefani; Christelle Demarquay; Jean-Marc Bertho
The aim of this work was to characterize multipotent mesenchymal stromal cells (MSCs) in the postnatal human thymus and to localize these MSCs in the organ. Adherent cells isolated from thymus samples were characterized by cell-surface antigen expression. This showed that adherent cells have a MSC profile as assessed by the expression of CD73 and CD105 markers and the lack of CD45 expression. These cells are able to differentiate in vitro into adipocytes, osteoblasts, and chondrocytes and to inhibit mixed lymphocyte reaction. This indicates that isolated cells have all of the characteristics of MSC. The fibroblast colony-forming unit (CFU-F) assay was used to determine their frequency in the postnatal thymus. This frequency was 60.9 +/- 14.8 CFU-F per 1 x 10(5) freshly isolated mononuclear cells. Moreover, taking advantage of CD34 and CD105 expression, immunohistological staining allowed us to localize MSC within interlobular trabeculae in close contact with the outer cortex. Polymerase chain reaction experiments indicated that thymic MSC expressed interleukin-7 and stromal cell-derived factor-1 messenger RNA. Overall, these results confirm previous findings of the presence in the adult human thymus of multipotent MSCs with a phenotype similar to adipose-derived adult stem cells. These results also show for the first time a histological localization of MSC in an organ. This suggests a possible role of thymic MSC in intrathymic differentiation.
International Journal of Radiation Biology | 2004
Jean-Marc Bertho; E. Mathieu; A. Lauby; Johanna Frick; Christelle Demarquay; Patrick Gourmelon; N. C. Gorin; Dominique Thierry
Purpose: To define the ability of bone marrow mononuclear cells (BMMNC) to expand after irradiation and to determine the amount of apoptosis in irradiated expanded cells. Materials and methods: Non‐human primate BMMNC were irradiated in vitro at doses ranging from 0 to 4 Gy and were cultured during 1 week in the presence of interleukin 3, interleukin 6, stem cell factor, thrombopoietin and fms‐like tyrosine kinase‐3 ligand. The expansion yield of BMMNC, colony‐forming cells and CD34+ cells were compared with non‐irradiated control cultures. Apoptosis in expanded cells was also defined by annexin V/propidium iodine staining. Results: Irradiation of BMMNC up to 1 Gy did not modify the ability of haematopoietic cells to expand. At higher doses, expansion of haematopoietic cells is reduced as compared with non‐irradiated cultures but it remains significant. This reduction in expansion of BMMNC was related to radiation‐induced apoptosis. Conclusion: The results suggest that it is possible to expand haematopoietic cells after irradiation doses at least up to 2 Gy. This suggests a possible use of cell therapy for the treatment of radiation accident victims.
Journal of Hematotherapy & Stem Cell Research | 2002
Jean-Marc Bertho; Johanna Frick; Christelle Demarquay; Armelle Lauby; Emilie Mathieu; Nicolas Dudoignon; Nelly Jacquet; F. Trompier; Alain Chapel; Christophe Joubert; Manuel Lopez; Jocelyne Aigueperse; Norbert-Claude Gorin; Patrick Gourmelon; Dominique Thierry
To assess the therapeutic efficacy of ex vivo-expanded hematopoietic cells in the treatment of radiation-induced pancytopenia, we have set up a non-human primate model. Two ex vivo expansion protocols for bone marrow mononuclear cells (BMMNC) were studied. The first consisted of a 7-day culture in the presence of stem cell factor (SCF), Flt3-ligand, thrombopoietin (TPO), interleukin-3 (IL-3), and IL-6, which induced preferentially the expansion of immature hematopoietic cells [3.1 +/- 1.4, 10.0 +/- 5.1, 2.2 +/- 1.9, and 1.0 +/- 0.3-fold expansion for mononuclear cells (MNC), colony-forming units-granulocyte-macrophage (CFU-GM), burst-forming units erythroid (BFU-E), and long-term culture initiating cells (LTC-IC) respectively]. The second was with the same cytokine combination supplemented with granulocyte colony-stimulating factor (G-CSF) with an increased duration of culture up to 14 days and induced mainly the production of mature hematopoietic cells (17.2 +/- 11.7-fold expansion for MNC and no detectable BFU-E and LTC-IC), although expansion of CFU-GM (13.7 +/- 18.8-fold) and CD34+ cells (5.2 +/- 1.4-fold) was also observed. Results showed the presence of mesenchymal stem cells and cells from the lymphoid and the megakaryocytic lineages in 7-day expanded BMMNC. To test the ability of ex vivo-expanded cells to sustain hematopoietic recovery after radiation-induced aplasia, non-human primates were irradiated at a supralethal dose of 8 Gy and received the product of either 7-day (24 h after irradiation) or 14-day (8 days after irradiation) expanded BMMNC. Results showed that the 7-day ex vivo-expanded BMMNC shortened the period and the severity of pancytopenia and improved hematopoietic recovery, while the 14 day ex vivo-expanded BMMNC mainly produced a transfusion-like effect during 8 days, followed by hematopoietic recovery. These results suggest that ex vivo expanded BMMNC during 7 days may be highly efficient in the treatment of radiation-induced aplasia.
Leukemia & Lymphoma | 2006
Marie Prat; Johanna Frick; Jean-Philippe Laporte; Dominique Thierry; Norbert-Claude Gorin; Jean-Marc Bertho
The present study aimed to follow-up variations in plasma Flt3 ligand (FL) concentration after hematopoietic stem cell transplantation and to compare the influence of conditioning regimens on variations in FL concentration. Ten patients undergoing a conditioning regimen, including BEAM, cyclophosphamide (Cy) + total body irradiation or Cy + anti-thymocyte globulins (ATG), which was then followed by hematopoietic stem cell transplantation, were studied. Plasma FL concentrations, white blood cell (WBC) expression of both FL mRNA and the membrane-bound form of FL were carried out at different times post-treatment. The results indicated that plasma FL concentration increased rapidly after the conditioning regimen in all patients, in correlation with the decrease in number of WBCs. The area under the curve of FL according to time was directly correlated with the duration of pancytopenia, except when ATG was included in the conditioning regimen. Although the number of patients was limited in this study, the comparison of ATG-treated patients and other patients suggests that plasma FL concentration is regulated by a complex mechanism partly involving circulating blood cells.
International Journal of Radiation Biology | 2006
Eric Gregoire; Irène Sorokine-Durm; Jean-Marc Bertho; N. Jacquet; M. Delbos; Christelle Demarquay; Philippe Voisin; Laurence Roy
Purpose: The purpose of this study was to examine a new approach to retrospective biological dosimetry, by using a long-term animal model to determine the stability of translocation frequency after in vivo irradiation. While the frequency of dicentrics is known to decrease over time, the persistence of more stable chromosomal aberrations such as translocations could be useful if their stability were definitively proved. Materials and methods: Four monkeys (Macaca fascicularis) were exposed to two different doses of ionizing radiation: 2 Gy whole body irradiation for two and 4 Gy for two others. Blood samples were obtained at various times after irradiation. Both total and two-way translocations were detected by fluorescence in situ hybridization. Translocations were scored in stable cells, that is, those without dicentrics, rings or fragments. The course of translocation frequency was analysed at four time-points: one hour (H1), 2 months (M2), 10 months (M10) and 31 months (M31) after irradiation. Results: We observed two separate trends in translocation frequency: Total translocation frequency decreased slightly in animals irradiated with a dose of 2 Gy, while two-way translocation frequency was relatively stable in all irradiated animals. Conclusions: We confirmed the long-term stability of translocations and found that it seems to depend on the type of the translocation recorded. Overall translocations were stable for up to 31 months regardless of dose, but two-way translocations were more stable than those that were non-reciprocal, especially in stable cells.