Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jean-Marc Idée is active.

Publication


Featured researches published by Jean-Marc Idée.


Fundamental & Clinical Pharmacology | 2006

Clinical and biological consequences of transmetallation induced by contrast agents for magnetic resonance imaging: a review

Jean-Marc Idée; Marc Port; Isabelle Raynal; Michel Schaefer; Soizic Le Greneur; Claire Corot

Gadolinium‐based contrast agents (CAs) are widely used to enhance the contrast of images in magnetic resonance imaging procedures. Two categories of gadolinium chelates exist: the macrocyclic molecules where Gd3+ is caged in the pre‐organized cavity of the ligand and the linear molecules. Gadolinium chelates differ in their thermodynamic stability constants and in their kinetic stability. In general, macrocyclic chelates such as Gd‐DOTA or Gd‐HP‐DO3A are more stable than linear molecules. Even among linear agents, differences can be found. There is increasing evidence that transmetallation can be found in vivo, in the case of certain CAs (especially linear chelates), with body cations such as zinc, calcium or iron. Furthermore, analytical interference with colorimetric determination of calcium has been clinically evidenced with two linear chelates, Gd‐DTPA‐BMA and Gd‐DTPA‐BMEA. Clinical cases of spurious hypocalcaemia have been reported with these molecules. Such interference with some colorimetric assays for calcium is clinically relevant in that it can lead to unnecessary and potentially harmful treatment for hypocalcaemia.


Investigative Radiology | 2006

Preclinical Safety and Pharmacokinetic Profile of Ferumoxtran-10, an Ultrasmall Superparamagnetic Iron Oxide Magnetic Resonance Contrast Agent

Philippe Bourrinet; Howard Bengele; Bruno Bonnemain; Anne Dencausse; Jean-Marc Idée; Paula Jacobs; Jerome M. Lewis

Objectives:This report presents an overview of preclinical data available on ferumoxtran-10, an ultrasmall superparamagnetic iron oxide nanoparticular contrast agent proposed for lymph node magnetic resonance imaging. Materials and Methods:Pharmacokinetic, safety pharmacology, single- and repeat-dose toxicity, reproduction toxicity, and genotoxicity studies were performed with ferumoxtran-10 given intravenously (bolus injection) in mice, rats, rabbits, dogs, and monkeys. Results:Ferumoxtran-10 was taken up by macrophages, mostly in liver, spleen, and lymph nodes, within 24 hours after bolus injection and underwent progressive metabolism. Toxicity was observed only at very high exposure levels and mainly was linked to a massive iron load after repeated injections. Ferumoxtran-10 was not mutagenic but was teratogenic in rats and rabbits. Discussion:The preclinical pharmacokinetic and safety profile of ferumoxtran-10 appears to be satisfactory in view of its proposed use as a single-dose diagnostic agent in human for MR imaging of lymph nodes.


Investigative Radiology | 2010

Reactive Oxygen Species and the Pathogenesis of Radiocontrast-Induced Nephropathy

Samuel N. Heyman; Seymour Rosen; Mogher Khamaisi; Jean-Marc Idée; Christian Rosenberger

Experimental findings in vitro and in vivo illustrate enhanced hypoxia and the formation of reactive oxygen species (ROS) within the kidney following the administration of iodinated contrast media, which may play a role in the development of contrast media-induced nephropathy. Clinical studies indeed support this possibility, suggesting a protective effect of ROS scavenging or reduced ROS formation with the administration of N-acetyl cysteine and bicarbonate infusion, respectively. Furthermore, most risk factors, predisposing to contrast-induced nephropathy are prone to enhanced renal parenchymal hypoxia and ROS formation.In this review, the association of renal hypoxia and ROS-mediated injury is outlined. Generated during contrast-induced renal parenchymal hypoxia, ROS may exert direct tubular and vascular endothelial injury and might further intensify renal parenchymal hypoxia by virtue of endothelial dysfunction and dysregulation of tubular transport. Preventive strategies conceivably should include inhibition of ROS generation or ROS scavenging.


Investigative Radiology | 2015

T1-Weighted Hypersignal in the Deep Cerebellar Nuclei After Repeated Administrations of Gadolinium-Based Contrast Agents in Healthy Rats: Difference Between Linear and Macrocyclic Agents.

Philippe Robert; Stéphane Lehéricy; Sylvie Grand; Xavier Violas; Nathalie Fretellier; Jean-Marc Idée; Sébastien Ballet; Claire Corot

ObjectivesTo prospectively compare in healthy rats the effect of multiple injections of macrocyclic (gadoterate meglumine) and linear (gadodiamide) gadolinium-based contrast agents (GBCAs) on T1-weighted signal intensity in the deep cerebellar nuclei (DCN), including the dentate nucleus. Materials and MethodsHealthy rats (n = 7/group) received 20 intravenous injections of 0.6 mmol of gadolinium (Gd) per kilogram (4 injections per week during 5 weeks) of gadodiamide, gadoterate meglumine, or hyperosmolar saline (control group). Brain T1-weighted magnetic resonance imaging was performed before and once a week during the 5 weeks of injections and during 5 additional weeks (treatment-free period). Gadolinium concentrations were measured with inductively coupled plasma mass spectrometry in plasma and brain. Blinded qualitative and quantitative evaluations of the T1 signal intensity in DCN were performed, as well as a statistical analysis on quantitative data. ResultsA significant and persistent T1 signal hyperintensity in DCN was observed only in gadodiamide-treated rats. The DCN-to-cerebellar cortex signal ratio was significantly increased from the 12th injection of gadodiamide (1.070 ± 0.024) compared to the gadoterate meglumine group (1.000 ± 0.033; P < 0.001) and control group (1.019 ± 0.022; P < 0.001) and did not significantly decrease during the treatment-free period. Total Gd concentrations in the gadodiamide group were significantly higher in the cerebellum (3.66 ± 0.91 nmol/g) compared with the gadoterate meglumine (0.26 ± 0.12 nmol/g; P < 0.05) and control (0.06 ± 0.10 nmol/g; P < 0.05) groups. ConclusionsRepeated administrations of the linear GBCA gadodiamide to healthy rats are associated with progressive and persistent T1 signal hyperintensity in the DCN, with Gd deposition in the cerebellum in contrast with the macrocyclic GBCA gadoterate meglumine for which no effect was observed.


Magnetic Resonance Materials in Physics Biology and Medicine | 2001

P792: a rapid clearance blood pool agent for magnetic resonance imaging: preliminary results

Marc Port; Claire Corot; Olivier Rousseaux; Isabelle Raynal; Ludovic Devoldere; Jean-Marc Idée; Anne Dencausse; Soizic Le Greneur; Christian Simonot; Dominique Meyer

An original MRI contrast agent, called P792, is described. P792 is a gadolinium macrocyclic compound based on a Gd-DOTA structure substituted by hydrophilic arms. The chemical structure of P792 has been optimized in order to provide (1) a high r1 relaxivity in the clinical field for MRI: 29 mM−1 x s−1 at 60 MHz. (2) a high biocompatibility profile and (3) a high molecular volume: the apparent hydrodynamic volume of P792 is 125 times greater than that of Gd-DOTA. As a result of this high molecular volume, P792 presents an unusual pharmacokinetic profile, as it is a Rapid Clearance Blood Pool Agent (RCBPA) characterized by limited diffusion across the normal endothelium. The original pharmacokinetic properties of this RCBPA are expected to be well suited to MR coronary angiography, angiography, perfusion imaging (stress and rest), and permeability imaging (detection of ischemia and tumor grading). Further experimental imaging studies are ongoing to define the clinical value of this compound.


Investigative Radiology | 2016

Linear Gadolinium-Based Contrast Agents Are Associated With Brain Gadolinium Retention in Healthy Rats

Philippe Robert; Xavier Violas; Sylvie Grand; Stéphane Lehéricy; Jean-Marc Idée; Sébastien Ballet; Claire Corot

ObjectivesThe aim of this study was to evaluate Gd retention in the deep cerebellar nuclei (DCN) of linear gadolinium-based contrast agents (GBCAs) compared with a macrocyclic contrast agent. Materials and MethodsThe brain tissue retention of Gd of 3 linear GBCAs (gadobenate dimeglumine, gadopentetate dimeglumine, and gadodiamide) and a macrocyclic GBCA (gadoterate meglumine) was compared in healthy rats (n = 8 per group) that received 20 intravenous injections of 0.6 mmol Gd/kg (4 injections per week for 5 weeks). An additional control group with saline was included. T1-weighted magnetic resonance imaging was performed before injection and once a week during the 5 weeks of injections and for another 4 additional weeks after contrast period. Total gadolinium concentration was measured with inductively coupled plasma mass spectrometry. Blinded qualitative and quantitative evaluations of the T1 signal intensity in DCN were performed, as well as a statistical analysis on quantitative data. ResultsAt completion of the injection period, all the linear contrast agents (gadobenate dimeglumine, gadopentetate dimeglumine, and gadodiamide) induced a significant increase in signal intensity in DCN, unlike the macrocyclic GBCA (gadoterate meglumine) or saline. The T1 hypersignal enhancement kinetic was fast for gadodiamide. Total Gd concentrations for the 3 linear GBCAs groups at week 10 were significantly higher in the cerebellum (1.21 ± 0.48, 1.67 ± 0.17, and 3.75 ± 0.18 nmol/g for gadobenate dimeglumine, gadopentetate dimeglumine, and gadodiamide, respectively) than with the gadoterate meglumine (0.27 ± 0.16 nmol/g, P < 0.05) and saline (0.09 ± 0.12 nmol/g, P < 0.05). No significant difference was observed between the macrocyclic agent and saline. ConclusionsRepeated administrations of the linear GBCAs gadodiamide, gadobenate dimeglumine, and gadopentetate dimeglumine to healthy rats were associated with progressive and significant T1 signal hyperintensity in the DCN, along with Gd deposition in the cerebellum. This is in contrast with the macrocyclic GBCA gadoterate meglumine for which no effect was observed.


Journal of Magnetic Resonance Imaging | 2009

Role of thermodynamic and kinetic parameters in gadolinium chelate stability.

Jean-Marc Idée; Marc Port; Caroline Robic; Christelle Medina; Monique Sabatou; Claire Corot

In recent years there has been a renewed interest in the physicochemical properties of gadolinium chelates (GC). The aim of this review is to discuss the physicochemical properties of marketed GC with regard to possible biological consequences. GC can be classified according to three key molecular features: 1) the nature of the chelating moiety: either macrocyclic molecules in which Gd3+ is caged in the preorganized cavity of the ligand, or linear, open‐chain molecules; 2) ionicity: the ionicity of the molecule varies from neutral to tri‐anionic agents; and 3) the presence or absence of an aromatic lipophilic moiety, which has a profound impact on the biodistribution of the GC. These parameters can also explain why GC differ considerably with regard to their thermodynamic stability constants and kinetic stability, as demonstrated by numerous studies. The concept of thermodynamic and kinetic stability is critically discussed, as it remains somewhat controversial, especially in predicting the amount of free gadolinium that may result from decomplexation of chelates in physiologic or pathologic situations. This review examines the possibility that the high kinetic stability provided by the macrocyclic structure combined with a high thermodynamic stability (reinforced by ionicity for macrocyclic chelates) can minimize the amount of free Gd3+ released in the body. J. Magn. Reson. Imaging 2009;30:1249–1258.


Investigative Radiology | 2001

Physicochemical and biological evaluation of P792, a rapid-clearance blood-pool agent for magnetic resonance imaging.

Marc Port; Claire Corot; Isabelle Raynal; Jean-Marc Idée; Anne Dencausse; Eric Lancelot; Dominique Meyer; Bruno Bonnemain; Jean Lautrou

RATIONALE AND OBJECTIVES To summarize the physicochemical characterization, pharmacokinetic behavior, and biological evaluation of P792, a new monogadolinated MRI blood-pool agent. METHODS The molecular modeling of P792 was described. The r1 relaxivity properties of P792 were measured in water and 4% human serum albumin at different magnetic fields (20, 40, 60 MHz). The stability of the gadolinium complex was assessed. The pharmacokinetic and biodistribution profiles were studied in rabbits. Renal tolerance in dehydrated rats undergoing selective intrarenal injection was evaluated. Hemodynamic safety in rats and in vitro histamine and leukotriene B4 release were also tested. RESULTS The mean diameter of P792 is 50.5 A and the r1 relaxivity of this monogadolinium contrast agent is 29 L x mmol(-1) x s(-1) at 60 MHz. The stability of the gadolinium complex in transmetallation is excellent. The pharmacokinetic and biodistribution profiles are consistent with that of a rapid-clearance blood-pool agent: P792 is mainly excreted by glomerular filtration, and its diffusion across normal endothelium is limited. Renal and hemodynamic safety is comparable to that of the nonspecific agent gadolinium-tetraazacyclododecane tetraacetic acid. No histamine or leukotriene B4 release was found in RBL-2H3 isolated mastocytes. CONCLUSIONS The relaxivity of P792 at clinical field is very high for a monogadolinium complex without protein binding. The pharmacokinetic and biodistribution profiles are consistent with those of a rapid-clearance blood-pool agent. Its initial safety profile is satisfactory. Experimental and clinical studies are underway to confirm the potential of P792 in MRI.


Critical Reviews in Oncology Hematology | 2013

Use of Lipiodol as a drug-delivery system for transcatheter arterial chemoembolization of hepatocellular carcinoma: a review.

Jean-Marc Idée; Boris Guiu

Hepatocellular carcinoma (HCC) remains a major public health problem. Transarterial chemoembolization (TACE) is recognized as the standard of care for patients with unresectable, asymptomatic, noninvasive and multinodular HCC. This procedure is based on percutaneous administration of a cytotoxic drug emulsified with Lipiodol followed by embolization of the tumour-feeding arteries. The standard procedure involves Lipiodol, an oily contrast medium which consists of a mixture of long-chain di-iodinated ethyl esters of poppy seed fatty acids. The aim of this review is to discuss the physical properties, tumour uptake behaviour and drug delivery effects of Lipiodol, the parameters influencing tumour uptake and future prospects. Lipiodol has a unique place in TACE as it combines three specific characteristics: drug delivery, transient and plastic embolization and radiopacity properties. Substantial heterogeneity in the physicochemical characteristics of Lipiodol/cytotoxic agent emulsions might reduce the efficacy of this procedure and justifies the current interest in Lipiodol for drug delivery.


Radiologic Clinics of North America | 2009

Involvement of gadolinium chelates in the mechanism of nephrogenic systemic fibrosis: an update.

Jean-Marc Idée; Marc Port; Anne Dencausse; Eric Lancelot; Claire Corot

Nephrogenic systemic fibrosis (NSF) is a highly debilitating scleroderma-like disease occurring exclusively in patients with severe or end-stage renal failure. Since the recognition of a link between gadolinium chelates (GCs) used as contrast agents for MR imaging and NSF by two independent European teams in 2006, numerous studies have described the clinical issues and investigated the mechanism of this disease. So far the most commonly reported hypothesis is based on the in vivo dechelation of GCs. The physicochemical properties of GCs, especially their thermodynamic and kinetic stabilities, are described in the present article. High kinetic stability provided by the macrocyclic structure, combined with high thermodynamic stability, minimizes the amount of free gadolinium released in the body. The current hypotheses regarding the pathophysiologic mechanism are critically discussed.

Collaboration


Dive into the Jean-Marc Idée's collaboration.

Researchain Logo
Decentralizing Knowledge