Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jean-Marc Plancher is active.

Publication


Featured researches published by Jean-Marc Plancher.


Angewandte Chemie | 2011

Systematic Investigation of Halogen Bonding in Protein-Ligand Interactions.

Leo A. Hardegger; Bernd Kuhn; Beat Spinnler; Lilli Anselm; Robert Ecabert; Martine Stihle; Bernard Gsell; Ralf Thoma; Joachim Diez; Jörg Benz; Jean-Marc Plancher; Guido Hartmann; David W. Banner; Wolfgang Haap; François Diederich

Halogen bonding (XB) refers to the noncovalent interaction of general structure DX···A between halogen-bearing compounds (DX: XB donor, where X=Cl, Br, I) and nucleophiles (A: XB acceptor). Since the first observation in cocrystal structures of 1,4-dioxane and Br2 by Hassel and Hvoslef in 1954, XB has been widely used in crystal engineering and solid-state supramolecular chemistry. The nature of the interaction and the underlying electronic prerequisite, the s hole in the XB donor, have been the subject of extensive theoretical studies. 7–9] Most recently, the attractive nature of XB between 1-iodoperfluoroalkanes and various donors has also been demonstrated and quantified in solution studies. Novel inhibitors of human Cathepsin L (hCatL) were discovered which bind covalently to the side chain of the catalytic Cys25 residue in the S1 pocket under formation of thioimidates, which are stabilized by the oxyanion hole of the protease. These ligands form hydrogen bonds to the backbone NH and C=O groups of Gly68 and Asp162, respectively, and fill the S2 and S3 pockets, thereby interacting with the enzyme through multiple lipophilic contacts. During the course of this research, we obtained an indication of an XB contact between a 4-chlorophenyl moiety of a ligand, whose binding affinity was enhanced by a factor of 13 compared to the unsubstituted phenyl derivative, and the backbone C=O group of Gly61 in the S3 pocket (Figure 1). This finding stimulated the prepa-


ChemMedChem | 2011

Halogen Bonding at the Active Sites of Human Cathepsin L and MEK1 Kinase: Efficient Interactions in Different Environments

Leo A. Hardegger; Bernd Kuhn; Beat Spinnler; Lilli Anselm; Robert Ecabert; Martine Stihle; Bernard Gsell; Ralf Thoma; Joachim Diez; Jörg Benz; Jean-Marc Plancher; Guido Hartmann; Yoshiaki Isshiki; Kenji Morikami; Nobuo Shimma; Wolfgang Haap; David W. Banner; François Diederich

In two series of small‐molecule ligands, one inhibiting human cathepsin L (hcatL) and the other MEK1 kinase, biological affinities were found to strongly increase when an aryl ring of the inhibitors is substituted with the larger halogens Cl, Br, and I, but to decrease upon F substitution. X‐ray co‐crystal structure analyses revealed that the higher halides engage in halogen bonding (XB) with a backbone CO in the S3 pocket of hcatL and in a back pocket of MEK1. While the S3 pocket is located at the surface of the enzyme, which provides a polar environment, the back pocket in MEK1 is deeply buried in the protein and is of pronounced apolar character. This study analyzes environmental effects on XB in protein–ligand complexes. It is hypothesized that energetic gains by XB are predominantly not due to water replacements but originate from direct interactions between the XB donor (CarylX) and the XB acceptor (CO) in the correct geometry. New X‐ray co‐crystal structures in the same crystal form (space group P212121) were obtained for aryl chloride, bromide, and iodide ligands bound to hcatL. These high‐resolution structures reveal that the backbone CO group of Gly61 in most hcatL co‐crystal structures maintains water solvation while engaging in XB. An arylCF3‐substituted ligand of hcatL with an unexpectedly high affinity was found to adopt the same binding geometry as the aryl halides, with the CF3 group pointing to the CO group of Gly61 in the S3 pocket. In this case, a repulsive F2CF⋅⋅⋅OC contact apparently is energetically overcompensated by other favorable protein–ligand contacts established by the CF3 group.


Bioorganic & Medicinal Chemistry Letters | 2011

Optimization of a novel class of benzimidazole-based farnesoid X receptor (FXR) agonists to improve physicochemical and ADME properties

Hans Richter; Gregory Martin Benson; Konrad Bleicher; Denise Blum; Evelyne Chaput; N. Clemann; Song Feng; Christophe Gardes; Uwe Grether; Peter Hartman; Bernd Kuhn; Rainer E. Martin; Jean-Marc Plancher; Markus G. Rudolph; Franz Schuler; Sven Taylor

Structure-guided lead optimization of recently described benzimidazolyl acetamides addressed the key liabilities of the previous lead compound 1. These efforts culminated in the discovery of 4-{(S)-2-[2-(4-chloro-phenyl)-5,6-difluoro-benzoimidazol-1-yl]-2-cyclohexyl-acetylamino}-3-fluoro-benzoic acid 7g, a highly potent and selective FXR agonist with excellent physicochemical and ADME properties and potent lipid lowering activity after oral administration to LDL receptor deficient mice.


Bioorganic & Medicinal Chemistry Letters | 2011

Discovery of novel and orally active FXR agonists for the potential treatment of dyslipidemia & diabetes

Hans Richter; Gregory Martin Benson; Denise Blum; Evelyne Chaput; Song Feng; Christophe Gardes; Uwe Grether; Peter Hartman; Bernd Kuhn; Rainer E. Martin; Jean-Marc Plancher; Markus G. Rudolph; Franz Schuler; Sven Taylor; Konrad Bleicher

Herein we describe the synthesis and structure activity relationship of a new class of FXR agonists identified from a high-throughput screening campaign. Further optimization of the original hits led to molecules that were highly active in an LDL-receptor KO model for dyslipidemia. The most promising candidate is discussed in more detail.


Bioorganic & Medicinal Chemistry Letters | 2009

Identification of an N-oxide pyridine GW4064 analog as a potent FXR agonist.

Song Feng; Minmin Yang; Zhenshan Zhang; Zhanguo Wang; Di Hong; Hans Richter; Gregory Martin Benson; Konrad Bleicher; Uwe Grether; Rainer E. Martin; Jean-Marc Plancher; Bernd Kuhn; Markus G. Rudolph; Li Chen

According to the docking studies and the analysis of a co-crystal structure of GW4064 with FXR, a series of 3-aryl heterocyclic isoxazole analogs were designed and synthesized. N-Oxide pyridine analog (7b) was identified as a promising FXR agonist with potent binding affinity and good efficacy, supporting our hypothesis that through an additional hydrogen bond interaction between the pyridine substituent of isoxazole analogs and Tyr373 and Ser336 of FXR, binding affinity and functional activity could be improved.


ChemMedChem | 2015

Evaluation of tert-Butyl Isosteres: Case Studies of Physicochemical and Pharmacokinetic Properties, Efficacies, and Activities

Matthias Westphal; Bernd T. Wolfstädter; Jean-Marc Plancher; John Gatfield; Erick M. Carreira

The tert‐butyl group is a common motif in medicinal chemistry. Its incorporation into bioactive compounds is often accompanied by unwanted property modulation, such as increased lipophilicity and decreased metabolic stability. Several alternative substituents are available for the drug discovery process. Herein, physicochemical data of two series of drug analogues of bosentan and vercirnon are documented as part of a comparative study of tert‐butyl, pentafluorosulfanyl, trifluoromethyl, bicyclo[1.1.1]pentanyl, and cyclopropyl‐trifluoromethyl substituents.


Journal of Medicinal Chemistry | 2009

5-Hydroxyindole-2-carboxylic Acid Amides: Novel Histamine-3 Receptor Inverse Agonists for the Treatment of Obesity

Pascale David Pierson; Alec Fettes; Christian Freichel; Silvia Gatti-McArthur; Cornelia Hertel; Jörg Huwyler; Peter Mohr; Toshito Nakagawa; Matthias Nettekoven; Jean-Marc Plancher; Susanne Raab; Hans Richter; Olivier Roche; Rosa Maria Rodriguez Sarmiento; Monique Schmitt; Franz Schuler; Tadakatsu Takahashi; Sven Taylor; Christoph Ullmer; Ruby Wiegand

Obesity is a major risk factor in the development of conditions such as hypertension, hyperglycemia, dyslipidemia, coronary artery disease, and cancer. Several pieces of evidence across different species, including primates, underscore the implication of the histamine 3 receptor (H(3)R) in the regulation of food intake and body weight and the potential therapeutic effect of H(3)R inverse agonists. A pharmacophore model, based on public information and validated by previous investigations, was used to design several potential scaffolds. Out of these scaffolds, the 5-hydroxyindole-2-carboxylic acid amide appeared to be of great potential as a novel series of H(3)R inverse agonist. Extensive structure-activity relationships revealed the interconnectivity of microsomal clearance and hERG (human ether-a-go-go-related gene) affinity with lipophilicity, artificial membrane permeation, and basicity. This effort led to the identification of compounds reversing the (R)-alpha-methylhistamine-induced water intake increase in Wistar rats and, further, reducing food intake in diet-induced obese Sprague-Dawley rats. Of these, the biochemical, pharmacokinetic, and pharmacodynamic characteristics of (4,4-difluoropiperidin-1-yl)[1-isopropyl-5-(1-isopropylpiperidin-4-yloxy)-1H-indol-2-yl]methanone 36 are detailed.


Journal of Medicinal Chemistry | 2008

Benzodioxoles: Novel Cannabinoid-1 Receptor Inverse Agonists for the Treatment of Obesity

Leo Alig; Jochem Alsenz; Mirjana Andjelkovic; Stefanie Bendels; Agnès Bénardeau; Konrad Bleicher; Anne Bourson; Pascale David-Pierson; Wolfgang Guba; Stefan Hildbrand; Dagmar Kube; Thomas Lübbers; Alexander V. Mayweg; Robert Narquizian; Werner Neidhart; Matthias Nettekoven; Jean-Marc Plancher; Cynthia Rocha; Mark Rogers-Evans; Stephan Röver; Gisbert Schneider; Sven Taylor; Pius Waldmeier

The application of the evolutionary fragment-based de novo design tool TOPology Assigning System (TOPAS), starting from a known CB1R (CB-1 receptor) ligand, followed by further refinement principles, including pharmacophore compliance, chemical tractability, and drug likeness, allowed the identification of benzodioxoles as a novel CB1R inverse agonist series. Extensive multidimensional optimization was rewarded by the identification of promising lead compounds, showing in vivo activity. These compounds reversed the CP-55940-induced hypothermia in Naval Medical Research Institute (NMRI) mice and reduced body-weight gain, as well as fat mass, in diet-induced obese Sprague-Dawley rats. Herein, we disclose the tools and strategies that were employed for rapid hit identification, synthesis and generation of structure-activity relationships, ultimately leading to the identification of (+)-[( R)-2-(2,4-dichloride-phenyl)-6-fluoro-2-(4-fluoro-phenyl)-benzo[1,3]dioxol-5-yl]-morpholin-4-yl-methanone ( R)-14g . Biochemical, pharmacokinetic, and pharmacodynamic characteristics of ( R)-14g are discussed.


Angewandte Chemie | 2016

Formation of α-SF5-Enolate Enables Preparation of 3-SF5-Quinolin-2-ones, 3-SF5-Quinolines, and 3-SF5-Pyridin-2-ones: Evaluation of their Physicochemical Properties

Adrien Joliton; Jean-Marc Plancher; Erick M. Carreira

This study describes, for the first time, the generation of a SF5 -substituted ester enolate from benzyl SF5 -acetate under soft enolization conditions, which in turn participates in aldol addition reactions in high yield. The reaction was applied in the synthesis of 3-SF5 -quinolin-2-ones, 3-SF5 -quinolines, and 3-SF5 -pyridin-2-ones, none of which have previously been reported. To provide guidelines for their use in drug discovery, the physicochemical properties of these building blocks were determined and compared with those of their CF3 - and t-Bu-analogues.


Bioorganic & Medicinal Chemistry Letters | 2009

Selective naphthalene H3 receptor inverse agonists with reduced potential to induce phospholipidosis and their quinoline analogs

Rosa Maria Rodriguez Sarmiento; Matthias Nettekoven; Sven Taylor; Jean-Marc Plancher; Hans Richter; Olivier Roche

We reported earlier the refinement of our initial five-point pharmacophore model for the Histamine 3 receptor (H(3)R), with a new acceptor feature important for binding and selectivity against the other histamine receptor subtypes 1, 2 and 4. This approach was validated with a new series of H(3)R inverse agonists: the naphthalene series. In this Letter, we describe our efforts to overcome the phospholipidosis flag identified with our initial lead compound (1a). During the optimization process, we monitored the potency of our molecules toward the H(3) receptor, their selectivity against H(1)R, H(2)R and H(4)R, as well as some key molecular properties that may influence phospholipidosis. Encouraged by the promising profile of the naphthalene series, we used our deeper understanding of the H(3)R pharmacophore model to lead us towards the quinoline series. This series is perceived to have intrinsic advantages with respect to its amphiphilic vector.

Collaboration


Dive into the Jean-Marc Plancher's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge