Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jean Marc Sabatier is active.

Publication


Featured researches published by Jean Marc Sabatier.


Journal of Immunology | 2001

Selective Blocking of Voltage-Gated K+ Channels Improves Experimental Autoimmune Encephalomyelitis and Inhibits T Cell Activation

Christine Beeton; Jocelyne Barbaria; Pierre Giraud; Jérôme Devaux; Anne-Marie Benoliel; Maurice Gola; Jean Marc Sabatier; Dominique Bernard; Marcel Crest; Evelyne Beraud

Kaliotoxin (KTX), a blocker of voltage-gated potassium channels (Kv), is highly selective for Kv1.1 and Kv1.3. First, Kv1.3 is expressed by T lymphocytes. Blockers of Kv1.3 inhibit T lymphocyte activation. Second, Kv1.1 is found in paranodal regions of axons in the central nervous system. Kv blockers improve the impaired neuronal conduction of demyelinated axons in vitro and potentiate the synaptic transmission. Therefore, we investigated the therapeutic properties of KTX via its immunosuppressive and symptomatic neurological effects, using experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. The T line cells used to induce adoptive EAE were myelin basic protein (MBP)-specific, constitutively contained mRNA for Kv1.3. and expressed Kv1.3. These channels were shown to be blocked by KTX. Activation is a crucial step for MBP T cells to become encephalitogenic. The addition of KTX during Ag-T cell activation led to a great reduction in the MBP T cell proliferative response, in the production of IL-2 and TNF, and in Ca2+ influx. Furthermore, the addition of KTX during T cell activation in vitro led a decreased encephalitogenicity of MBP T cells. Moreover, KTX injected into Lewis rats impaired T cell function such as the delayed-type hypersensitivity. Lastly, the administration of this blocker of neuronal and lymphocyte channels to Lewis rats improved the symptoms of EAE. We conclude that KTX is a potent immunosuppressive agent with beneficial effects on the neurological symptoms of EAE.


Current Medicinal Chemistry | 2007

Modulators of Small- and Intermediate-Conductance Calcium-Activated Potassium Channels and their Therapeutic Indications

Heike Wulff; Aaron Kolski-Andreaco; Ananthakrishnan Sankaranarayanan; Jean Marc Sabatier; Vikram G. Shakkottai

Calcium-activated potassium channels modulate calcium signaling cascades and membrane potential in both excitable and non-excitable cells. In this article we will review the physiological properties, the structure activity relationships of the existing peptide and small molecule modulators and the therapeutic importance of the three small-conductance channels KCa2.1-KCa2.3 (a.k.a. SK1-SK3) and the intermediate-conductance channel KCa3.1 (a.k.a. IKCa1). The apamin-sensitive KCa2 channels contribute to the medium afterhyperpolarization and are crucial regulators of neuronal excitability. Based on behavioral studies with apamin and on observations made in several transgenic mouse models, KCa2 channels have been proposed as targets for the treatment of ataxia, epilepsy, memory disorders and possibly schizophrenia and Parkinsons disease. In contrast, KCa3.1 channels are found in lymphocytes, erythrocytes, fibroblasts, proliferating vascular smooth muscle cells, vascular endothelium and intestinal and airway epithelia and are therefore regarded as targets for various diseases involving these tissues. Since two classes of potent and selective small molecule KCa3.1 blocker, triarylmethanes and cyclohexadienes, have been identified, several of these postulates have already been validated in animal models. The triarylmethane ICA-17043 is currently in phase III clinical trials for sickle cell anemia while another triarylmethane, TRAM-34, has been shown to prevent vascular restenosis in rats and experimental autoimmune encephalomyelitis in mice. Experiments showing that a cyclohexadiene KCa3.1 blocker reduces infarct volume in a rat subdural hematoma model further suggest KCa3.1 as a target for the treatment of traumatic and possibly ischemic brain injury. Taken together KCa2 and KCa3.1 channels constitute attractive new targets for several diseases that currently have no effective therapies.


Journal of Biological Chemistry | 2001

Design and Characterization of a Highly Selective Peptide Inhibitor of the Small Conductance Calcium-activated K+Channel, SkCa2

Vikram G. Shakkottai; Imed Regaya; Heike Wulff; Ziad Fajloun; Hiroaki Tomita; Mohamed Fathallah; Michael D. Cahalan; J. Jay Gargus; Jean Marc Sabatier; K. George Chandy

Apamin-sensitive small conductance calcium-activated potassium channels (SKCa1–3) mediate the slow afterhyperpolarization in neurons, but the molecular identity of the channel has not been defined because of the lack of specific inhibitors. Here we describe the structure-based design of a selective inhibitor of SKCa2. Leiurotoxin I (Lei) and PO5, peptide toxins that share the RXCQ motif, potently blocked human SKCa2 and SKCa3 but not SKCa1, whereas maurotoxin, Pi1, Tsκ, and PO1 were ineffective. Lei blocked these channels more potently than PO5 because of the presence of Ala1, Phe2, and Met7. By replacing Met7 in the RXCQ motif of Lei with the shorter, unnatural, positively charged diaminobutanoic acid (Dab), we generated Lei-Dab7, a selective SKCa2 inhibitor (K d = 3.8 nm) that interacts with residues in the external vestibule of the channel. SKCa3 was rendered sensitive to Lei-Dab7 by replacing His521 with the corresponding SKCa2 residue (Asn367). Intracerebroventricular injection of Lei-Dab7 into mice resulted in no gross central nervous system toxicity at concentrations that specifically blocked SKCa2 homotetramers. Lei-Dab7 will be a useful tool to investigate the functional role of SKCa2 in mammalian tissues.


Biochemical Journal | 2005

K+ channel types targeted by synthetic OSK1, a toxin from Orthochirus scrobiculosus scorpion venom

Stéphanie Mouhat; Violeta Visan; S. Ananthakrishnan; Heike Wulff; Nicolas Andreotti; Stephan Grissmer; Hervé Darbon; Michel De Waard; Jean Marc Sabatier

OSK1 (alpha-KTx3.7) is a 38-residue toxin cross-linked by three disulphide bridges that was initially isolated from the venom of the Asian scorpion Orthochirus scrobiculosus. OSK1 and several structural analogues were produced by solid-phase chemical synthesis, and were tested for lethality in mice and for their efficacy in blocking a series of 14 voltage-gated and Ca2+-activated K+ channels in vitro. In the present paper, we report that OSK1 is lethal in mice by intracerebroventricular injection, with a LD50 (50% lethal dose) value of 2 microg/kg. OSK1 blocks K(v)1.1, K(v)1.2, K(v)1.3 channels potently and K(Ca)3.1 channel moderately, with IC50 values of 0.6, 5.4, 0.014 and 225 nM respectively. Structural analogues of OSK1, in which we mutated positions 16 (Glu16-->Lys) and/or 20 (Lys20-->Asp) to amino acid residues that are conserved in all other members of the alpha-KTx3 toxin family except OSK1, were also produced and tested. Among the OSK1 analogues, [K16,D20]-OSK1 (OSK1 with Glu16-->Lys and Lys20-->Asp mutations) shows an increased potency on K(v)1.3 channel, with an IC50 value of 0.003 nM, without loss of activity on K(Ca)3.1 channel. These data suggest that OSK1 or [K16,D20]-OSK1 could serve as leads for the design and production of new immunosuppressive drugs.


Biochemical Journal | 2004

The 'functional' dyad of scorpion toxin Pi1 is not itself a prerequisite for toxin binding to the voltage-gated Kv1.2 potassium channels.

Stéphanie Mouhat; Amor Mosbah; Violeta Visan; Heike Wulff; Muriel Delepierre; Hervé Darbon; Stephan Grissmer; Michel De Waard; Jean Marc Sabatier

Pi1 is a 35-residue scorpion toxin cross-linked by four disulphide bridges that acts potently on both small-conductance Ca2+-activated (SK) and voltage-gated (Kv) K+ channel subtypes. Two approaches were used to investigate the relative contribution of the Pi1 functional dyad (Tyr-33 and Lys-24) to the toxin action: (i) the chemical synthesis of a [A24,A33]-Pi1 analogue, lacking the functional dyad, and (ii) the production of a Pi1 analogue that is phosphorylated on Tyr-33 (P-Pi1). According to molecular modelling, this phosphorylation is expected to selectively impact the two amino acid residues belonging to the functional dyad without altering the nature and three-dimensional positioning of other residues. P-Pi1 was directly produced by peptide synthesis to rule out any possibility of trace contamination by the unphosphorylated product. Both Pi1 analogues were compared with synthetic Pi1 for bioactivity. In vivo, [A24,A33]-Pi1 and P-Pi1 are lethal by intracerebroventricular injection in mice (LD50 values of 100 and 40 microg/mouse, respectively). In vitro, [A24,A33]-Pi1 and P-Pi1 compete with 125I-apamin for binding to SK channels of rat brain synaptosomes (IC50 values of 30 and 10 nM, respectively) and block rat voltage-gated Kv1.2 channels expressed in Xenopus laevis oocytes (IC50 values of 22 microM and 75 nM, respectively), whereas they are inactive on Kv1.1 or Kv1.3 channels at micromolar concentrations. Therefore, although both analogues are less active than Pi1 both in vivo and in vitro, the integrity of the Pi1 functional dyad does not appear to be a prerequisite for the recognition and binding of the toxin to the Kv1.2 channels, thereby highlighting the crucial role of other toxin residues with regard to Pi1 action on these channels. The computed simulations detailing the docking of Pi1 peptides on to the Kv1.2 channels support an unexpected key role of specific basic amino acid residues, which form a basic ring (Arg-5, Arg-12, Arg-28 and Lys-31 residues), in toxin binding.


Molecular Pharmacology | 2005

Pharmacological Profiling of Orthochirus scrobiculosus Toxin 1 Analogs with a Trimmed N-Terminal Domain

Stéphanie Mouhat; Georgeta Teodorescu; Daniel Homerick; Violeta Visan; Heike Wulff; Yingliang Wu; Stephan Grissmer; Hervé Darbon; Michel De Waard; Jean Marc Sabatier

OSK1, a toxin from the venom of the Asian scorpion Orthochirus scrobiculosus, is a 38-residue peptide cross-linked by three disulfide bridges. A structural analog of OSK1, [Lys16,Asp20]-OSK1, was found previously to be one of the most potent blockers of the voltage-gated K+ channel Kv1.3 hitherto characterized. Here, we demonstrate that progressive trimming of the N-terminal domain of [Lys16,Asp20]-OSK1 results in marked changes in its pharmacological profile, in terms of both K+ channel affinity and selectivity. Whereas the affinity to Kv1.1 and Kv1.3 did not change significantly, the affinity to Kv1.2 and KCa3.1 was drastically reduced with the truncations. It is surprising that a striking gain in potency was observed for Kv3.2. In contrast, a truncation of the C-terminal domain, expected to partially disrupt the toxin β-sheet structure, resulted in a significant decrease or a complete loss of activity on all channel types tested. These data highlight the value of structure-function studies on the extended N-terminal domain of [Lys16,Asp20]-OSK1 to identify new analogs with unique pharmacological properties.


Journal of Biological Chemistry | 2003

Critical Amino Acid Residues Determine the Binding Affinity and the Ca2+ Release Efficacy of Maurocalcine in Skeletal Muscle Cells

Eric Estève; Sophia Smida-Rezgui; Sándor Sárközi; Csaba Szegedi; Imed Regaya; Lili Chen; Xavier Altafaj; Herré Rochat; Paul D. Allen; Isaac N. Pessah; Isabelle Marty; Jean Marc Sabatier; István Jóna; Michel De Waard; Michel Ronjat

Maurocalcine (MCa) is a 33 amino acid residue peptide toxin isolated from the scorpion Scorpio maurus palmatus. MCa and mutated analogues were chemically synthesized, and their interaction with the skeletal muscle ryanodine receptor (RyR1) was studied on purified RyR1, sarcoplasmic reticulum (SR) vesicles, and cultured myotubes. MCa strongly potentiates [3H]ryanodine binding on SR vesicles (7-fold at pCa 5) with an apparent EC50 of 12 nm. MCa decreases the sensitivity of [3H]ryanodine binding to inhibitory high Ca2+ concentrations and increases it to the stimulatory low Ca2+ concentrations. In the presence of MCa, purified RyR1 channels show long-lasting openings characterized by a conductance equivalent to 60% of the full conductance. This effect correlates with a global increase in Ca2+ efflux as demonstrated by MCa effects on Ca2+ release from SR vesicles. In addition, we show for the first time that external application of MCa to cultured myotubes produces a cytosolic Ca2+ increase due to Ca2+ release from 4-chloro-m-cresol-sensitive intracellular stores. Using various MCa mutants, we identified a critical role of Arg24 for MCa binding onto RyR1. All of the other MCa mutants are still able to modify [3H]ryanodine binding although with a decreased EC50 and a lower stimulation efficacy. All of the active mutants produce both the appearance of a subconductance state and Ca2+ release from SR vesicles. Overall, these data identify some amino acid residues of MCa that support the effect of this toxin on ryanodine binding, RyR1 biophysical properties, and Ca2+ release from SR.


Neuroscience Letters | 2005

Blockade of NMDA receptors enhances spontaneous sharp waves in rat hippocampal slices

Laura Lee Colgin; Yousheng Jia; Jean Marc Sabatier; Gary Lynch

An in vitro model of sharp waves (SPWs) and ripples was used to investigate the involvement of NMDA receptors in SPW/ripple production. Intracellular recordings from CA3 pyramidal cells confirmed that SPWs are composed of primarily excitatory currents. Unexpectedly, NMDA receptor antagonists greatly increased the size of SPWs and ripples. This effect may have involved decreased calcium influx through NMDA receptors and a subsequent reduction in the activation of SK2 calcium-activated potassium channels. The results support the claim that activation of NMDA receptors can serve to dampen the excitation of SPWs.


Infectious disorders drug targets | 2012

Lacticin LC14, a New Bacteriocin Produced by Lactococcus lactis BMG6.14: Isolation, Purification and Partial Characterization

Samar Lasta; Hadda Ouzari; Nicolas Andreotti; Ziad Fajloun; Pascal Mansuelle; Abdellatif Boudabous; François Sampieri; Jean Marc Sabatier

A new bacteriocin, lacticin LC14, produced by Lactococcus lactis BMG6.14, was isolated and characterized. It was purified to homogeneity from overnight broth culture by ammonium sulfate precipitation, Sep-Pak chromatography, and two steps of reversed-phase HPLC. Lacticin LC14 showed bactericidal-type antimicrobial activity against several lactic acid bacteria and pathogenic strains including Listeria monocytogenes. It was inactivated by proteinase K and pronase E, but was resistant to papain, lysozyme, lipase and catalase. Lacticin LC14 was heat resistant, stable over a wide range of pH (2-10) and after treatment by solvents and detergents. Its N-terminal end was found unreactive towards Edman sequencing. Based on MALDI-TOF mass spectrometry, its molecular mass was 3333.7 Da. LC14 amino acid composition revealed a high proportion of hydrophobic residues, but no modified ones. LC14 may be able to challenge other well known other bacteriocins in probiotic and therapeutic applications.


Infectious disorders drug targets | 2016

Genetic Characterization of Lactic Acid Bacteria Isolated from Tunisian Milk Waste and their Antimicrobial Activity Against some Bacteria Implicated in Nosocomial Infections.

Hanen Ghodhbane; Valentina Alessandria; Mejdi Snoussi; Lobna Elleuch; Ismail Trabelsi; Chedly Abdelly; Jean Marc Sabatier; Luca Cocolin; Imed Regaya

BACKGROUNDnA total of 94 lactic acid bacteria (LAB) were isolated from Tunisian artisanal (Ricotta cheeses whey) and industrial (bactofugate) milk waste, identified and then screened for their antimicrobial activity against some bacteria implicated on nosocomial infections.nnnOBJECTIVEnBacterial genera and species identification was performed using molecular tools. The antimicrobial activity was tested against 7 strains of Gram-negative bacteria and 4 strains of Gram-positive bacteria as well as 6 yeasts.nnnMETHODnThe Crude extract was found to have a narrow antimicrobial spectrum on Gram-positive bacteria mainly Listeria monocytogenes. Among the strains which showed antibacterial activity, four were determined to be bacteriocins-producers. They were identified as Lactococcus lactis.nnnRESULTSnBrain Heart Infusion (BHI) Agar was found more adapted than Man, Rogosa and Sharpe (MRS) to investigate the antimicrobial activity of L. actococcus lactis against L. isteria monocytogenes. The genetic determinants encoding the antimicrobial peptides were targeted by specific PCR.nnnCONCLUSIONnAll L. lactis bacteriocin producing strains possessed the Nisine Z gene (nisZ) except for one, which contained both Nisine A and Nisine Z genes (nisA and nisZ). They have been identified as antilisterial agentS.

Collaboration


Dive into the Jean Marc Sabatier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heike Wulff

University of California

View shared research outputs
Top Co-Authors

Avatar

Kamel Mabrouk

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Hervé Darbon

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Imed Regaya

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Stéphanie Mouhat

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge