Jean-Marie Hombert
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jean-Marie Hombert.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Lluis Quintana-Murci; Hélène Quach; Christine Harmant; Francesca Luca; Blandine Massonnet; Etienne Patin; Lucas Sica; Patrick Mouguiama-Daouda; David Comas; Shay Tzur; Oleg Balanovsky; Kenneth K. Kidd; Judith R. Kidd; Lolke Van der Veen; Jean-Marie Hombert; Antoine Gessain; Paul Verdu; Alain Froment; Serge Bahuchet; Evelyne Heyer; Jean Dausset; Antonio Salas; Doron M. Behar
Two groups of populations with completely different lifestyles—the Pygmy hunter–gatherers and the Bantu-speaking farmers—coexist in Central Africa. We investigated the origins of these two groups and the interactions between them, by analyzing mtDNA variation in 1,404 individuals from 20 farming populations and 9 Pygmy populations from Central Africa, with the aim of shedding light on one of the most fascinating cultural transitions in human evolution (the transition from hunting and gathering to agriculture). Our data indicate that this region was colonized gradually, with an initial L1c-rich ancestral population ultimately giving rise to current-day farmers, who display various L1c clades, and to Pygmies, in whom L1c1a is the only surviving clade. Detailed phylogenetic analysis of complete mtDNA sequences for L1c1a showed this clade to be autochthonous to Central Africa, with its most recent branches shared between farmers and Pygmies. Coalescence analyses revealed that these two groups arose through a complex evolutionary process characterized by (i) initial divergence of the ancestors of contemporary Pygmies from an ancestral Central African population no more than ≈70,000 years ago, (ii) a period of isolation between the two groups, accounting for their phenotypic differences, (iii) long-standing asymmetric maternal gene flow from Pygmies to the ancestors of the farming populations, beginning no more than ≈40,000 years ago and persisting until a few thousand years ago, and (iv) enrichment of the maternal gene pool of the ancestors of the farming populations by the arrival and/or subsequent demographic expansion of L0a, L2, and L3 carriers.
Molecular Biology and Evolution | 2009
Gemma Berniell-Lee; Francesc Calafell; Elena Bosch; Evelyne Heyer; Lucas Sica; Patrick Mouguiama-Daouda; Lolke Van der Veen; Jean-Marie Hombert; Lluis Quintana-Murci; David Comas
The expansion of Bantu languages, which started around 5,000 years before present in west/central Africa and spread all throughout sub-Saharan Africa, may represent one of the major and most rapid demographic movements in the history of the human species. Although the genetic footprints of this expansion have been unmasked through the analyses of the maternally inherited mitochondrial DNA lineages, information on the genetic impact of this massive movement and on the genetic composition of pre-Bantu populations is still scarce. Here, we analyze an extensive collection of Y-chromosome markers--41 single nucleotide polymorphisms and 18 short tandem repeats--in 883 individuals from 22 Bantu-speaking agriculturalist populations and 3 Pygmy hunter-gatherer populations from Gabon and Cameroon. Our data reveal a recent origin for most paternal lineages in west Central African populations most likely resulting from the expansion of Bantu-speaking farmers that erased the more ancient Y-chromosome diversity found in this area. However, some traces of ancient paternal lineages are observed in these populations, mainly among hunter-gatherers. These results are at odds with those obtained from mtDNA analyses, where high frequencies of ancient maternal lineages are observed, and substantial maternal gene flow from hunter-gatherers to Bantu farmers has been suggested. These differences are most likely explained by sociocultural factors such as patrilocality. We also find the intriguing presence of paternal lineages belonging to Eurasian haplogroup R1b1*, which might represent footprints of demographic expansions in central Africa not directly related to the Bantu expansion.
Molecular Biology and Evolution | 2013
Paul Verdu; Noémie S.A. Becker; Alain Froment; Myriam Georges; Viola Grugni; Lluis Quintana-Murci; Jean-Marie Hombert; Lolke Van der Veen; Sylvie Le Bomin; Serge Bahuchet; Evelyne Heyer; Frédéric Austerlitz
Sociocultural phenomena, such as exogamy or phylopatry, can largely determine human sex-specific demography. In Central Africa, diverging patterns of sex-specific genetic variation have been observed between mobile hunter-gatherer Pygmies and sedentary agricultural non-Pygmies. However, their sex-specific demography remains largely unknown. Using population genetics and approximate Bayesian computation approaches, we inferred male and female effective population sizes, sex-specific migration, and admixture rates in 23 Central African Pygmy and non-Pygmy populations, genotyped for autosomal, X-linked, Y-linked, and mitochondrial markers. We found much larger effective population sizes and migration rates among non-Pygmy populations than among Pygmies, in agreement with the recent expansions and migrations of non-Pygmies and, conversely, the isolation and stationary demography of Pygmy groups. We found larger effective sizes and migration rates for males than for females for Pygmies, and vice versa for non-Pygmies. Thus, although most Pygmy populations have patrilocal customs, their sex-specific genetic patterns resemble those of matrilocal populations. In fact, our results are consistent with a lower prevalence of polygyny and patrilocality in Pygmies compared with non-Pygmies and a potential female transmission of reproductive success in Pygmies. Finally, Pygmy populations showed variable admixture levels with the non-Pygmies, with often much larger introgression from male than from female lineages. Social discrimination against Pygmies triggering complex movements of spouses in intermarriages can explain these male-biased admixture patterns in a patrilocal context. We show how gender-related sociocultural phenomena can determine highly variable sex-specific demography among populations, and how population genetic approaches contrasting chromosomal types allow inferring detailed human sex-specific demographic history.
Nature Communications | 2015
Maud Fagny; Etienne Patin; Julia L. MacIsaac; Maxime Rotival; Timothée Flutre; Meaghan J. Jones; Katherine J. Siddle; Hélène Quach; Christine Harmant; Lisa M. McEwen; Alain Froment; Evelyne Heyer; Antoine Gessain; Edouard Betsem; Patrick Mouguiama-Daouda; Jean-Marie Hombert; George H. Perry; Luis B. Barreiro; Michael S. Kobor; Lluis Quintana-Murci
The genetic history of African populations is increasingly well documented, yet their patterns of epigenomic variation remain uncharacterized. Moreover, the relative impacts of DNA sequence variation and temporal changes in lifestyle and habitat on the human epigenome remain unknown. Here we generate genome-wide genotype and DNA methylation profiles for 362 rainforest hunter-gatherers and sedentary farmers. We find that the current habitat and historical lifestyle of a population have similarly critical impacts on the methylome, but the biological functions affected strongly differ. Specifically, methylation variation associated with recent changes in habitat mostly concerns immune and cellular functions, whereas that associated with historical lifestyle affects developmental processes. Furthermore, methylation variation—particularly that correlated with historical lifestyle—shows strong associations with nearby genetic variants that, moreover, are enriched in signals of natural selection. Our work provides new insight into the genetic and environmental factors affecting the epigenomic landscape of human populations over time.
Current Anthropology | 2015
Koen Bostoen; Bernard-Olivier Clist; Charles Doumenge; Rebecca Grollemund; Jean-Marie Hombert; Joseph Koni Muluwa; Jean Maley
This article reviews evidence from biogeography, palynology, geology, historical linguistics, and archaeology and presents a new synthesis of the paleoclimatic context in which the early Bantu expansion took place. Paleoenvironmental data indicate that a climate crisis affected the Central African forest block during the Holocene, first on its periphery around 4000 BP and later at its core around 2500 BP. We argue here that both phases had an impact on the Bantu expansion but in different ways. The climate-induced extension of savannas in the Sanaga-Mbam confluence area around 4000–3500 BP facilitated the settlement of early Bantu-speech communities in the region of Yaoundé but did not lead to a large-scale geographic expansion of Bantu-speaking village communities in Central Africa. An extensive and rapid expansion of Bantu-speech communities, along with the dispersal of cereal cultivation and metallurgy, occurred only when the core of the Central African forest block was affected around 2500 BP. We claim that the Sangha River interval in particular constituted an important corridor of Bantu expansion. With this interdisciplinary review, we substantially deepen and revise earlier hypotheses linking the Bantu expansion with climate-induced forest openings around 3000 BP.
Science | 2017
Etienne Patin; Marie Lopez; Rebecca Grollemund; Paul Verdu; Christine Harmant; Hélène Quach; Guillaume Laval; George H. Perry; Luis B. Barreiro; Alain Froment; Evelyne Heyer; Achille Massougbodji; Cesar Fortes-Lima; Florence Migot-Nabias; Gil Bellis; Jean-Michel Dugoujon; Joana B. Pereira; Verónica Fernandes; Luísa Pereira; Lolke Van der Veen; Patrick Mouguiama-Daouda; Carlos Bustamante; Jean-Marie Hombert; Lluis Quintana-Murci
Genetic analysis reveals the complex history of sub-Saharan Africans and African Americans. On the history of Bantu speakers Africans are underrepresented in many surveys of genetic diversity, which hinders our ability to study human evolution and the health of modern populations. Patin et al. examined the genetic diversity of Bantu speakers, who account for one-third of sub-Saharan Africans. They then modeled the timing of migration and admixture during the Bantu expansion. The analysis revealed adaptive introgression of genes that likely originated in other African populations, including specific immune-related genes. Applying this information to African Americans suggests that gene flow from Africa into the Americas was more complex than previously thought. Science, this issue p. 543 Bantu languages are spoken by about 310 million Africans, yet the genetic history of Bantu-speaking populations remains largely unexplored. We generated genomic data for 1318 individuals from 35 populations in western central Africa, where Bantu languages originated. We found that early Bantu speakers first moved southward, through the equatorial rainforest, before spreading toward eastern and southern Africa. We also found that genetic adaptation of Bantu speakers was facilitated by admixture with local populations, particularly for the HLA and LCT loci. Finally, we identified a major contribution of western central African Bantu speakers to the ancestry of African Americans, whose genomes present no strong signals of natural selection. Together, these results highlight the contribution of Bantu-speaking peoples to the complex genetic history of Africans and African Americans.
Nature Ecology and Evolution | 2018
Marie Lopez; Athanasios Kousathanas; Hélène Quach; Christine Harmant; Patrick Mouguiama-Daouda; Jean-Marie Hombert; Alain Froment; George H. Perry; Luis B. Barreiro; Paul Verdu; Etienne Patin; Lluis Quintana-Murci
Understanding how deleterious genetic variation is distributed across human populations is of key importance in evolutionary biology and medical genetics. However, the impact of population size changes and gene flow on the corresponding mutational load remains a controversial topic. Here, we report high-coverage exomes from 300 rainforest hunter-gatherers and farmers of central Africa, whose distinct subsistence strategies are expected to have impacted their demographic pasts. Detailed demographic inference indicates that hunter-gatherers and farmers recently experienced population collapses and expansions, respectively, accompanied by increased gene flow. We show that the distribution of deleterious alleles across these populations is compatible with a similar efficacy of selection to remove deleterious variants with additive effects, and predict with simulations that their present-day additive mutation load is almost identical. For recessive mutations, although an increased load is predicted for hunter-gatherers, this increase has probably been partially counteracted by strong gene flow from expanding farmers. Collectively, our predicted and empirical observations suggest that the impact of the recent population decline of African hunter-gatherers on their mutation load has been modest and more restrained than would be expected under a fully recessive model of dominance.High-coverage exomes from 300 central African hunter-gatherers and farmers reveal recent population trends and gene flow, as well as insight into the effects these trends have had on their respective mutational loads.
Language | 1979
Jean-Marie Hombert; John J. Ohala; William G. Ewan
Current Biology | 2009
Paul Verdu; Frédéric Austerlitz; Arnaud Estoup; Renaud Vitalis; Myriam Georges; Sylvain Théry; Alain Froment; Sylvie Le Bomin; Antoine Gessain; Jean-Marie Hombert; Lolke Van der Veen; Lluis Quintana-Murci; Serge Bahuchet; Evelyne Heyer
PLOS Genetics | 2009
Etienne Patin; Guillaume Laval; Luis B. Barreiro; Antonio Salas; Ornella Semino; Silvana Santachiara-Benerecetti; Kenneth K. Kidd; Judith R. Kidd; Lolke Van der Veen; Jean-Marie Hombert; Antoine Gessain; Alain Froment; Serge Bahuchet; Evelyne Heyer; Lluis Quintana-Murci