Jean-Marie Vaugeois
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jean-Marie Vaugeois.
Nature | 1997
Catherine Ledent; Jean-Marie Vaugeois; Serge N. Schiffmann; Thierry Pedrazzini; Malika El Yacoubi; Jean-Jacques Vanderhaeghen; Jean Costentin; John K. Heath; Gilbert Vassart; Marc Parmentier
Adenosine is released from metabolically active cells by facilitated diffusion, and is generated extracellularly by degradation of released ATP. It is a potent biological mediator that modulates the activity of numerous cell types, including various neuronal populations, platelets, neutrophils and mast cells, and smooth muscle cells in bronchi and vasculature. Most of these effects help to protect cells and tissues during stress conditions such as ischaemia. Adenosine mediates its effects through four receptor subtypes: the A1, A2a, A2b and A3 receptors. The A2a receptor (A2aR), is abundant in basal ganglia, vasculature and platelets, and stimulates adenylyl cyclase. It is a major target of caffeine, the most widely used psychoactive drug. Here we investigate the role of the A2a receptor by disrupting the gene in mice. We found that A2aR-knockout (A2aR−/−) mice were viable and bred normally. Their exploratory activity was reduced, whereas caffeine, which normally stimulates exploratory behaviour, became a depressant of exploratory activity. Knockout animals scored higher in anxiety tests, and male mice were much more aggressive towards intruders. The response of A2aR−/−mice to acute pain stimuli was slower. Blood pressure and heart rate were increased, as well as platelet aggregation. The specific A2a agonist CGS 21680 lost its biological activity in all systems tested.
International Review of Neurobiology | 2005
Bertil B. Fredholm; Chen J; Rodrigo A. Cunha; Per Svenningsson; Jean-Marie Vaugeois
Publisher Summary This chapter describes the role of adenosine in brain function. Adenosine is an endogenous neuromodulator that influences many functions in the central nervous system (CNS). The levels of adenosine increase when there is an imbalance between the rates of energy use and the rates of energy delivery. Increased neuronal activity, and hypoxia or ischemia results in elevated levels of adenosine. Adenosine receptors (ARs) were based on the ability of methylxanthines, such as theophylline and caffeine to act as antagonists. The two receptors, A1 and A2, inhibit and stimulate adenylyl cyclase respectively. The functions of ARs include: (1) regulation of nerve activity, (2) regulation of transmitter release, (3) interaction with other transmitter systems, and (4) various other functions. Increased extracellular adenosine in response to ischemia and hypoxia acts as a neuro-protectant during cerebral ischemia and other neuronal insults. ARs (A 1 Rs and A 2A Rs) are expressed at moderate to high levels in the brain areas enriched with dopaminergic innervation, thus providing an anatomical basis for interaction between these neurotransmitter systems. Different features of the phenotypes provide clues to the roles of defects in AR genes in human disease. The chapter discusses the roles of adenosine A 2A receptors in neurodegenerative disorders and ARs in psychiatric disorders. Caffeine is used to improve wakefulness and the main actions of caffeine are mediated by brain ARs. Adenosine might be an endogenous regulator of sleep–wake cycles, as adenosine analogs induced a sleep-like state. In addition, ARs may play many roles in pathways that contribute to pain. Clearly much additional work is needed to pinpoint the sites and mechanisms of action, as well as the roles in chronic pain states.
Nature Neuroscience | 2006
Catherine Heurteaux; Guillaume Lucas; Nicolas Guy; Malika El Yacoubi; Susanne Thümmler; Xiao-Dong Peng; Florence Noble; Nicolas Blondeau; Catherine Widmann; Marc Borsotto; Gabriella Gobbi; Jean-Marie Vaugeois; Guy Debonnel; Michel Lazdunski
Depression is a devastating illness with a lifetime prevalence of up to 20%. The neurotransmitter serotonin or 5-hydroxytryptamine (5-HT) is involved in the pathophysiology of depression and in the effects of antidepressant treatments. However, molecular alterations that underlie the pathology or treatment of depression are still poorly understood. The TREK-1 protein is a background K+ channel regulated by various neurotransmitters including 5-HT. In mice, the deletion of its gene (Kcnk2, also called TREK-1) led to animals with an increased efficacy of 5-HT neurotransmission and a resistance to depression in five different models and a substantially reduced elevation of corticosterone levels under stress. TREK-1–deficient (Kcnk2−/−) mice showed behavior similar to that of naive animals treated with classical antidepressants such as fluoxetine. Our results indicate that alterations in the functioning, regulation or both of the TREK-1 channel may alter mood, and that this particular K+ channel may be a potential target for new antidepressants.
British Journal of Pharmacology | 2000
Malika El Yacoubi; Catherine Ledent; Jean-François Menard; Marc Parmentier; Jean Costentin; Jean-Marie Vaugeois
The locomotor stimulatory effects induced by caffeine (1,3,7‐trimethylxanthine) in rodents have been attributed to antagonism of adenosine A1 and A2A receptors. Little is known about its locomotor depressant effects seen when acutely administered at high doses. The roles of adenosine A1 and A2A receptors in these activities were investigated using a Digiscan actimeter in experiments carried out in mice. Besides caffeine, the A2A antagonist SCH 58261 (5‐amino‐7‐(β‐phenylethyl)‐2‐(8‐furyl)pyrazolo[4,3‐e]‐1,2,4‐triazolo[1,5‐c]pyrimidine), the A1 antagonist DPCPX (8‐cyclopentyl‐1,3‐dipropylxanthine), the A1 agonist CPA (N6‐cyclopentyladenosine) and A2A receptor knockout mice were used. Caffeine had a biphasic effect on locomotion of wild‐type mice not habituated to the open field, stimulating locomotion at 6.25–25 mg kg−1 i.p. doses, while depressing it at 100 mg kg−1. In sharp contrast, caffeine dose‐dependently decreased locomotion in A2A receptor knockout mice over the whole range of tested doses. The depressant effects induced by high doses of caffeine were lost in control CD1 mice habituated to the open field. The A1 agonist CPA depressed locomotion at 0.3–1 mg kg−1 i.p. doses. The A1 antagonist DPCPX decreased locomotion of A2A receptor knockouts and CD1 mice at 5 mg kg−1 i.p. and 25 mg kg−1 i.p. respectively. DPCPX (0.2–1 mg kg−1 i.p.) left unaltered or even reduced the stimulant effect of SCH 58261 (1–3 mg kg−1 i.p.) on CD1 mice. These results suggest therefore that the stimulant effect of low doses of caffeine is mediated by A2A receptor blockade while the depressant effect seen at higher doses under some conditions is explained by A1 receptor blockade.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Malika El Yacoubi; Saoussen Bouali; Daniela Popa; Laurent Naudon; Isabelle Leroux-Nicollet; Michel Hamon; Jean Costentin; Joëlle Adrien; Jean-Marie Vaugeois
Depression is a multifactorial illness and genetic factors play a role in its etiology. The understanding of its physiopathology relies on the availability of experimental models potentially mimicking the disease. Here we describe a model built up by selective breeding of mice with strikingly different responses in the tail suspension test, a stress paradigm aimed at screening potential antidepressants. Indeed, “helpless” mice are essentially immobile in the tail suspension test, as well as the Porsolt forced-swim test, and they show reduced consumption of a palatable 2% sucrose solution. In addition, helpless mice exhibit sleep–wakefulness alterations resembling those classically observed in depressed patients, notably a lighter and more fragmented sleep, with an increased pressure of rapid eye movement sleep. Compared with “nonhelpless” mice, they display higher basal seric corticosterone levels and lower serotonin metabolism index in the hippocampus. Remarkably, serotonin1A autoreceptor stimulation induces larger hypothermia and inhibition of serotoninergic neuronal firing in the nucleus raphe dorsalis in helpless than in nonhelpless mice. Thus, helpless mice exhibit a decrease in serotoninergic tone, which evokes that associated with endogenous depression in humans. Finally, both the behavioral impairments and the serotoninergic dysfunction can be improved by chronic treatment with the antidepressant fluoxetine. The helpless line of mice may provide an opportunity to approach genes influencing susceptibility to depression and to investigate neurophysiological and neurochemical substrates underlying antidepressant effects.
British Journal of Pharmacology | 2001
Malika El Yacoubi; Catherine Ledent; Marc Parmentier; Rosalia Bertorelli; Ennio Ongini; Jean Costentin; Jean-Marie Vaugeois
Adenosine, an ubiquitous neuromodulator, and its analogues have been shown to produce ‘depressant’ effects in animal models believed to be relevant to depressive disorders, while adenosine receptor antagonists have been found to reverse adenosine‐mediated ‘depressant’ effect. We have designed studies to assess whether adenosine A2A receptor antagonists, or genetic inactivation of the receptor would be effective in established screening procedures, such as tail suspension and forced swim tests, which are predictive of clinical antidepressant activity. Adenosine A2A receptor knockout mice were found to be less sensitive to ‘depressant’ challenges than their wildtype littermates. Consistently, the adenosine A2A receptor blockers SCH 58261 (1 – 10 mg kg−1, i.p.) and KW 6002 (0.1 – 10 mg kg−1, p.o.) reduced the total immobility time in the tail suspension test. The efficacy of adenosine A2A receptor antagonists in reducing immobility time in the tail suspension test was confirmed and extended in two groups of mice. Specifically, SCH 58261 (1 – 10 mg kg−1) and ZM 241385 (15 – 60 mg kg−1) were effective in mice previously screened for having high immobility time, while SCH 58261 at 10 mg kg−1 reduced immobility of mice that were selectively bred for their spontaneous ‘helplessness’ in this assay. Additional experiments were carried out using the forced swim test. SCH 58261 at 10 mg kg−1 reduced the immobility time by 61%, while KW 6002 decreased the total immobility time at the doses of 1 and 10 mg kg−1 by 75 and 79%, respectively. Administration of the dopamine D2 receptor antagonist haloperidol (50 – 200 μg kg−1 i.p.) prevented the antidepressant‐like effects elicited by SCH 58261 (10 mg kg−1 i.p.) in forced swim test whereas it left unaltered its stimulant motor effects. In conclusion, these data support the hypothesis that A2A receptor antagonists prolong escape‐directed behaviour in two screening tests for antidepressants. Altogether the results support the hypothesis that blockade of the adenosine A2A receptor might be an interesting target for the development of effective antidepressant agents.
Current Pharmaceutical Design | 2008
Rodrigo A. Cunha; Sergi Ferré; Jean-Marie Vaugeois; Chen J
The interest on targeting adenosine A(2A) receptors in the realm of psychiatric diseases first arose based on their tight physical and functional interaction with dopamine D(2) receptors. However, the role of central A(2A) receptors is now viewed as much broader than just controlling D(2) receptor function. Thus, there is currently a major interest in the ability of A(2A) receptors to control synaptic plasticity at glutamatergic synapses. This is due to a combined ability of A(2A) receptors to facilitate the release of glutamate and the activation of NMDA receptors. Therefore, A(2A) receptors are now conceived as a normalizing device promoting adequate adaptive responses in neuronal circuits, a role similar to that fulfilled, in essence, by dopamine. This makes A(2A) receptors particularly attractive targets to manage psychiatric disorders since adenosine may act as go-between glutamate and dopamine, two of the key players in mood processing. Furthermore, A(2A) receptors also control glia function and brain metabolic adaptation, two other emerging mechanisms to understand abnormal processing of mood, and A(2A) receptors are important players in controlling the demise of neurodegeneration, considered an amplificatory loop in psychiatric disorders. Current data only provide an indirect confirmation of this putative role of A(2A) receptors, based on the effects of caffeine (an antagonist of both A(1) and A(2A) receptors) in psychiatric disorders. However, the introduction of A(2A) receptors antagonists in clinics as anti-parkinsonian agents is hoped to bolster our knowledge on the role of A(2A) receptors in mood disorders in the near future.
Psychopharmacology | 2000
M. El Yacoubi; Catherine Ledent; Marc Parmentier; Jean Costentin; Jean-Marie Vaugeois
Abstract Rationale: The elevated plus-maze and the light/dark box are two established anxiety tests in rodents, which are useful to screen putative anxiogenic effects of drugs. Objective: Caffeine is well known to promote anxious behaviour in humans and animal models, but the precise site of action of the drug is still a matter of debate. The present study investigated whether the anxiogenic effects of caffeine observed in mice depend on the blockade of A2A receptor. First, the effects induced by the non-selective drug caffeine were compared with those elicited by two selective A2A receptor antagonists over a wide range of doses in the same experimental conditions. The effects of A2A or A1 adenosine receptor agonists and of a selective A1 adenosine receptor antagonist were also investigated. Second, wild-type and A2A receptor knockout mice offered another approach to delineate the role played by A2A receptor in caffeine’s anxiogenic effects. Methods: Mice were exposed to the elevated plus-maze or to the light/dark box for 5 min after acute or chronic administration of tested drugs. Results: Caffeine acutely administered (50 or 100 mg/kg IP) induced anxiety-like effects in both procedures. Its chronic administration (50 mg/kg IP twice daily) for 1 week or consumption in the drinking water (0.3 g/l) for 8 days or 2 months were also anxiogenic in the plus-maze test. The A2A receptor antagonists ZM241385 (up to 60 mg/kg IP) and SCH58261 (up to 10 mg/kg IP) were devoid of acute effects in both tests. One week administration of ZM241385 (30 mg/kg IP) or SCH58261 (3 mg/kg IP) had no effects in the plus-maze test. An antagonist (DPCPX) and an agonist (CPA) at A1 receptors had no acute effects on anxiety-related indices, whereas an A2A receptor agonist (CGS 21680) displayed non-specific motor effects in the plus-maze test. Acute administration of caffeine (50 mg/kg IP) induced no clear-cut anxiety-like effects in the plus-maze test in A2A receptor knockout mice that exhibited higher basal anxiety levels than wild-type mice. Chronic administration (50 mg/kg IP twice daily) for 1 week elicited less anxiety-like behaviour in A2A receptor knockout than in wild-type mice. Conclusions: Adaptative mechanisms following mutation in A2A receptors or their long-term blockade after chronic ingestion of caffeine may be responsible for increase proneness to anxiety. However, the short-term anxiety-like effect of caffeine in mice might not be related solely to the blockade of adenosine A2A receptors, since it is not shared by A2A selective antagonists.
Neurology | 2003
Malika El Yacoubi; Jean Costentin; Jean-Marie Vaugeois
Adenosine and its analogues have been shown to induce “behavioral despair” in animal models believed to be relevant to depression. Recent data have shown that selective adenosine A2A receptor antagonists (e.g., SCH 58261, ZM241385, and KW6002) or genetic inactivation of the receptor was effective in reversing signs of behavioral despair in the tail suspension and forced swim tests, two screening procedures predictive of antidepressant activity. A2A antagonists were active in the tail suspension test using either mice previously screened for having high immobility scores or mice that were selectively bred for their spontaneous “helplessness” in this test. At stimulant doses, caffeine, a nonselective A1/A2A receptor antagonist, was effective in the forced swim test. The authors have hypothesized that the antidepressant-like effect of selective A2A antagonists is linked to an interaction with dopaminergic transmission, possibly in the frontal cortex. In support of this idea, administration of the dopamine D2 receptor antagonist haloperidol prevented antidepressant-like effects elicited by SCH 58261 in the forced swim test (putatively involving cortex), whereas it had no effect on stimulant motor effects of SCH 58261 (putatively linked to ventral striatum). The interaction profile of caffeine with haloperidol differed markedly from that of SCH 58261 in the forced swim and motor activity tests. Therefore, a clear-cut antidepressant-like effect could not be ascribed to caffeine. In conclusion, available data support the proposition that a selective blockade of the adenosine A2A receptor may be an interesting target for the development of effective antidepressant agents.
Neuropharmacology | 2003
M. El Yacoubi; Catherine Ledent; Marc Parmentier; Jean Costentin; Jean-Marie Vaugeois
The role of the adenosine A(2A) receptor in the hypnotic effects of ethanol was assessed in mice. The duration of the loss of righting reflex following acute ethanol administration was shorter for A(2A) receptor-deficient mice (A(2A)R KO) than for wild-type mice (A(2A)R WT), whereas the fall in body temperature was not different between the two phenotypes. In contrast, the duration of the loss of righting reflex was increased in A(2A)R KO mice versus controls after administration of pentobarbital. Dipyridamole, an inhibitor of adenosine uptake, increased the sleep time observed following administration of ethanol in CD1 mice and in A(2A)R WT but not in A(2A)R KO mice. SCH 58261, a selective A(2A) receptor antagonist, unlike DPCPX, a selective A(1) receptor antagonist, shortened the duration of the loss of righting reflex induced by ethanol, thus mimicking the lack of receptor in deficient mice. Finally, the non-selective adenosine receptor antagonist caffeine (25 mg/kg) reduced ethanol-induced hypnotic effects. These results indicate that the activation of A(2A) receptors that follows an increase in extracellular adenosine levels caused by the administration of high doses of ethanol plays a role in its hypnotic effects. Thus, A(2A) receptor antagonists may be useful therapeutic agents for alleviating ethylic coma.