Jean-Michel André
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jean-Michel André.
Global Biogeochemical Cycles | 1996
David Antoine; Jean-Michel André; André Morel
A fast method has been proposed [Antoine and Morel, this issue] to compute the oceanic primary production from the upper ocean chlorophyll-like pigment concentration, as it can be routinely detected by a spaceborne ocean color sensor. This method is applied here to the monthly global maps of the photosynthetic pigments that were derived from the coastal zone color scanner (CZCS) data archive [Feldman et al., 1989]. The photosynthetically active radiation (PAR) field is computed from the astronomical constant and by using an atmospheric model, thereafter combined with averaged cloud information, derived from the International Satellite Cloud Climatology Project (ISCCP). The aim is to assess the seasonal evolution, as well as the spatial distribution of the photosynthetic carbon fixation within the world ocean and for a “climatological year”, to the extent that both the chlorophyll information and the cloud coverage statistics actually are averages obtained over several years. The computed global annual production actually ranges between 36.5 and 45.6 Gt C yr−1 according to the assumption which is made (0.8 or 1) about the ratio of active-to-total pigments (recall that chlorophyll and pheopigments are not radiometrically resolved by CZCS). The relative contributions to the global productivity of the various oceans and zonal belts are examined. By considering the hypotheses needed in such computations, the nature of the data used as inputs, and the results of the sensitivity studies, the global numbers have to be cautiously considered. Improving the reliability of the primary production estimates implies (1) new global data sets allowing a higher temporal resolution and a better coverage, (2) progress in the knowledge of physiological responses of phytoplankton and therefore refinements of the time and space dependent parameterizations of these responses.
Journal of Geophysical Research | 1991
André Morel; Jean-Michel André
A set of 114 coastal zone color scanner (CZCS) images of the western Mediterranean (mainly in the year 1981) have been processed and analyzed to describe the algal biomass evolution and estimate its potential carbon fixation. For that, the pigment concentration in the top layer, Csat, is used through empirical relationships to infer the depth-integrated pigment content of the productive column, 〈C〉tot. A spectral light-photosynthesis model driven by 〈C〉tot is operated with additional information, namely, about sea temperature and photosynthetically available radiation (computed from astronomical and atmospherical parameters then combined with a cloud climatology). This model also includes a standard set of physiological parameters which account for the light capture by algae and for the use of this radiant energy in photosynthesis. This model allows a climatology of ψ* the cross section for photosynthesis per unit of areal chlorophyll, to be produced and then convoluted with the biomass maps after they have been averaged and composited. On average and for the whole western Mediterranean, the pigment concentration in the upper layer is about 0.25 mg Chl m−3, leading to an areal mean concentration of 21 mg Chl m−2. The maximum (bloom) occurs in early May in all zones. Seasonal variations in algal biomass are much more marked in the northern part than in the southern part (apart from Alboran Sea); the south Tyrrhenian basin and the central part of the Algerian basin are steadily oligotrophic. The mean annual carbon fixation rate for the whole basin is about 94 g C m−2 yr−1, or 106 and 87, for the northern and southern basins when separately considered. The seasonality is expressed by a six-fold change in the production rate (between February and May) within the northern zone, whereas only a two-fold change occurs in the southern zone between the same months. These estimates, which compare well with previous episodic field data, considerably extend our knowledge of the temporal progression of productivity within the entire western Mediterranean and its various provinces.
Journal of Geophysical Research | 1995
David Antoine; André Morel; Jean-Michel André
About 300 coastal zone color scanner (CZCS) scenes, gathered over the eastern Mediterranean basin mostly during the years 1979–1981, have been processed from level 1 by using improved pixel-by-pixel procedures for the atmospheric correction and pigment retrieval. The seasonal evolution of the upper ocean pigment concentration is described and analyzed within the whole basin and its subbasins. From the chlorophyll concentration in the top layer, and by using statistical relationships, the depth-integrated pigment content is estimated and used in conjunction with a light-photosynthesis model to estimate the carbon fixation. The model relies on a set of physiological parameters, selected after the validation of the light-photosynthesis model and not on locally measured parameters. Additional information needed in the modeling are the photosynthetically available radiation (computed from astronomic and atmospheric parameters, combined with a cloud climatology), sea temperature and mixed-layer depth (taken from Levitus (1982)). Actually, the model is used to generate look-up tables in such a way that all possible situations (concerning available radiation, chlorophyll concentration, and temperature) are covered. The appropriate situation associated with any pixel is selected from these tables to generate primary production maps. Despite a relatively good spatial coverage, studying the interannual variability of the pigment distribution and primary production appeared to be impossible. Therefore 12 “climatological” monthly chlorophyll maps have been produced by merging the data corresponding to several years. The carbon fixation rates in each of the subbasins have been computed on a monthly basis, and annual mean values derived thereafter. The primary production values are compared with sparse field determinations. They are also compared with those previously derived for the Western basin, also by using CZCS data (Morel and Andre, 1991). When put together, these companion works provide a kind of record of the trophic status of the entire Mediterranean Sea in the early 1980s. Ocean color sensors to be launched next, like SeaWIFS, will allow the seasonal and interannual variabilities in the late 1990s to be addressed.
Optics Express | 2010
M.-H. Hu; Karine Le Guen; Jean-Michel André; Philippe Jonnard; Evgueni Meltchakov; Franck Delmotte; A. Galtayries
We present the results of an optical and chemical, depth and surface study of Al/Mo/SiC periodic multilayers, designed as high reflectivity coatings for the extreme ultra-violet (EUV) range. In comparison to the previously studied Al/SiC system, the introduction of Mo as a third material in the multilayer structure allows us to decrease In comparison to the previously studied Al/SiC system with a reflectance of 37% at near normal incidence around 17 nm, the introduction of Mo as a third material in the multilayer structure allows us to decrease the interfacial roughness and achieve an EUV reflectivity of 53.4%, measured with synchrotron radiation. This is the first report of a reflectivity higher than 50% around 17 nm. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) and x-ray photoelectron spectroscopy (XPS) measurements are performed on the Al/Mo/SiC system in order to analyze the individual layers within the stack. ToF-SIMS and XPS results give evidence that the first SiC layer is partially oxidized, but the O atoms do not reach the first Mo and Al layers. We use these results to properly describe the multilayer stack and discuss the possible reasons for the difference between the measured and simulated EUV reflectivity values.
Optics Communications | 1991
A. Sammar; Jean-Michel André; B. Pardo
Abstract A dynamical theory is given to calculate the diffraction efficiencies of lamellar amplitude multilayer gratings (LAMGs). The model is applied to the LAMGs recently realized for the X-UV region. The unique diffraction properties of these devices are discussed. Roughness-induced scattering effects resulting from the pattern in relief of the grating are predicted and evaluated.
Optics Express | 2012
Qi Zhong; Wenbin Li; Zhong Zhang; Jingtao Zhu; Qiushi Huang; Haochuan Li; Zhanshan Wang; Philippe Jonnard; Karine Le Guen; Jean-Michel André; Hongjun Zhou; Tonglin Huo
Two kinds of Al/Zr (Al(1%wtSi)/Zr and Al(Pure)/Zr) multilayers for extreme ultraviolet (EUV) optics were deposited on fluorine doped tin oxide coated glass by using direct-current magnetron sputtering technology. The comparison of the two systems shows that the Al(1%wtSi)/Zr multilayers have the lowest interfacial roughness and highest reflectivity. Based on the X-ray diffraction, the performance of the two systems is determined by the crystallization of Al layer. To fully understand the Al(1%wtSi)/Zr multilayer, we built up a two-layer model to fit situation of the AFM images, and simulate the grazing incident x-ray reflection-measurements of multilayers with various periods (N = 10, 40, 60, 80). Below 40 periods, the roughness components are lowered. After 40 periods, both surface and interfacial roughness increase with the period number, and decrease the reflectance. According to transmission electron microscope images, the model can represent the variable structure of the system.
Applied Optics | 2010
Jingtao Zhu; Sika Zhou; Haochuan Li; Qiushi Huang; Zhanshan Wang; Karine Le Guen; M.-H. Hu; Jean-Michel André; Philippe Jonnard
Mg-based multilayers, including SiC/Mg, Co/Mg, B(4)C/Mg, and Si/Mg, are investigated for solar imaging and a He II calibration lamp at a 30.4 nm wavelength. These multilayers were fabricated by a magnetron sputtering method and characterized by x-ray reflection. The reflectivities of these multilayers were measured by synchrotron radiation. Near-normal-incidence reflectivities of Co/Mg and SiC/Mg multilayer mirrors are as high as 40.3% and 44.6%, respectively, while those of B(4)C/Mg and Si/Mg mirrors are too low for application. The measured results suggest that SiC/Mg, Co/Mg multilayers are promising for a 30.4 nm wavelength.
Applied Optics | 2010
E. O. Filatova; A. A. Sokolov; Jean-Michel André; Franz Schaefers; W. Braun
We calculated the optical constants of the monoclinic phase of a HfO2 film from reflection spectra measured using synchrotron radiation in the spectral region from 143 eV to 927 eV, which includes the HfN4,5− , HfN2,3− , and OK absorption edges. The calculations were carried out using the Kramers–Kronig relations. It could be shown that the relation R(E)∼E−4 can be used for extrapolation of the experimental reflection spectrum of HfO2 (and probably of other heavy elements) for energies such that θ/θc>3.7.
Proceedings of SPIE, the International Society for Optical Engineering | 2009
Philippe Jonnard; K. Le Guen; M.-H. Hu; Jean-Michel André; E. Meltchakov; Christophe Hecquet; F. Delmotte; A. Galtayries
We present the characterization of Al/SiC periodic multilayers designed for optical applications. In some samples, a thin layer of W or Mo is added at the SiC-on-Al interfaces. We use x-ray reflectivity (XRR) in order to determine the parameters of the stacks, i.e. thickness and roughness of all the layers. We have performed x-ray emission spectroscopy (XES) to identify the chemical state of the Al and Si atoms present within the structure from an analysis of the shape of the Al Kβ and Si Kβ emission bands. Finally, time of flight secondary ion mass spectrometry (ToF-SIMS) is used to obtain the depth profile of the different elements present within the studied stacks. A fit of the XRR curves shows that the Al/SiC multilayer present large interfacial roughness (up to 2.8 nm), which is decreased considerably (down to 1 nm or less) when the refractory metal layers are introduced in the periodic structure. The combination of XES and ToFSIMS allows us to conclude that in these systems the roughness is a purely geometrical parameter and not related to chemical interfacial reactions.
Applied Optics | 2002
Jean-Michel André; Rabah Benbalagh; R. Barchewitz; M.F. Ravet; Alain Raynal; F. Delmotte; F. Bridou; Gwénäelle Julié; Alain Bosseboeuf; René Laval; G. Soullie; Christian Remond; Michel Fialin
An x-ray multilayer monochromator with improved resolution and a low specular background is presented. The monochromator consists of a lamellar multilayer amplitude grating with appropriate parameters used at the zeroth diffraction order. The device is fabricated by means of combining deposition of thin films on a nanometer scale, UV lithography, and reactive ion etching. The performance of this new monochromator at photon energies near 1500 eV is shown.