Jean-Michel Betton
Pasteur Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jean-Michel Betton.
Molecular Microbiology | 1996
Dominique Missiakas; Jean-Michel Betton; Satish Raina
A global search for extracytoplasmic folding catalysts in Escherichia coli was undertaken using different genetic systems that produce unstable or misfolded proteins in the periplasm. The extent of misfolding was monitored by the increased activity of the σE regulon that is specifically induced by misfolded proteins in the periplasm. Using multicopy libraries, we cloned two genes, surA and fkpA, that decreased the σE‐dependent response constitutively induced by misfolded proteins. According to their sequences and their biochemical activities, SurA and FkpA belong to two different peptidyl prolyl isomerase (PPI) families. Interestingly, surA was also selected as a multicopy suppressor of a defined htrM (rfaD) null mutation. Such mutants produce a defective lipopolysaccharide that is unable to protect outer membrane proteins from degradation during folding. The SurA multicopy suppression effect in htrM (rfaD) mutant bacteria was directly associated with its ability to catalyse the folding of outer membrane proteins immediately after export. Finally, Tn10 insertions were isolated, which led to an increased activity of the σE regulon. Such insertions were mapped to the dsb genes encoding catalysts of the protein disulphide isomerase (PDI) family, as well as to the surA, fkpA and ompH/skpgenes. We propose that these three proteins (SurA, FkpA and OmpH/Skp) play an active role either as folding catalysts or as chaperones in extracytoplasmic compartments.
Molecular Microbiology | 2001
Jean-Philippe Arié; Nathalie Sassoon; Jean-Michel Betton
The nature of molecular chaperones in the periplasm of Escherichia coli that assist newly translocated proteins to reach their native state has remained poorly defined. Here, we show that FkpA, a heat shock periplasmic peptidyl‐prolyl cis/trans isomerase (PPIase), suppresses the formation of inclusion bodies from a defective‐folding variant of the maltose‐binding protein, MalE31. This chaperone‐like activity of FkpA, which is independent of its PPIase activity, requires a full‐length structure of the protein. In vitro, FkpA does not catalyse a slow rate‐limiting step in the refolding of MalE31, but prevents its aggregation at stoichiometric amounts and promotes the reactivation of denaturated citrate synthase. We propose that FkpA functions as a chaperone for envelope proteins in the bacterial periplasm.
Journal of the American Chemical Society | 2011
Manuela Pastoriza-Gallego; Leila Rabah; Gabriel Gibrat; Bénédicte Thiébot; Françoise Gisou van der Goot; L. Auvray; Jean-Michel Betton
Protein export is an essential mechanism in living cells and exported proteins are usually translocated through a protein-conducting channel in an unfolded state. Here we analyze, by electrical detection, the entry and transport of unfolded proteins, at the single molecule level, with different stabilities through an aerolysin pore, as a function of the applied voltage and protein concentration. The frequency of ionic current blockades varies exponentially as a function of the applied voltage and linearly as a function of protein concentration. The transport time of unfolded proteins decreases exponentially when the applied voltage increases. We prove that the ionic current blockade duration of a double-sized protein is longer than that assessed for a single protein supporting the transport phenomenon. Our results fit with the theory of confined polyelectrolyte and with some experimental results about DNA or synthetic polyelectrolyte translocation through protein channels as a function of applied voltage. We discuss the potential of the aerolysin nanopore as a tool for protein folding studies as it has already been done for α-hemolysin.
ACS Nano | 2011
Abdelghani Oukhaled; Benjamin Cressiot; Laurent Bacri; Manuela Pastoriza-Gallego; Jean-Michel Betton; Eric Le Bourhis; Ralf Jede; J. Gierak; L. Auvray
We report experimentally the dynamic properties of the entry and transport of unfolded and native proteins through a solid-state nanopore as a function of applied voltage, and we discuss the experimental data obtained as compared to theory. We show an exponential increase in the event frequency of current blockades and an exponential decrease in transport times as a function of the electric driving force. The normalized current blockage ratio remains constant or decreases for folded or unfolded proteins, respectively, as a function of the transmembrane potential. The unfolded protein is stretched under the electric driving force. The dwell time of native compact proteins in the pore is almost 1 order of magnitude longer than that of unfolded proteins, and the event frequency for both protein conformations is low. We discuss the possible phenomena hindering the transport of proteins through the pores, which could explain these anomalous dynamics, in particular, electro-osmotic counterflow and protein adsorption on the nanopore wall.
ACS Chemical Biology | 2012
Abdelghani Oukhaled; Laurent Bacri; Manuela Pastoriza-Gallego; Jean-Michel Betton
Proteins subjected to an electric field and forced to pass through a nanopore induce blockades of ionic current that depend on the protein and nanopore characteristics and interactions between them. Recent advances in the analysis of these blockades have highlighted a variety of phenomena that can be used to study protein translocation and protein folding, to probe single-molecule catalytic reactions in order to obtain kinetic and thermodynamic information, and to detect protein-antibody complexes, proteins with DNA and RNA aptamers, and protein-pore interactions. Nanopore design is now well controlled, allowing the development of future biotechnologies and medicine applications.
Molecular Microbiology | 2003
Sabine Hunke; Jean-Michel Betton
We previously characterized a defective‐folding mutant of maltose‐binding protein of Escherichia coli, MalE31, which formed periplasmic inclusion bodies. Here, we show that MalE31 aggregation does not affect bacterial growth at 30°C but is lethal at 37°C. Surprisingly, under mild heat shock conditions at 42°C, inclusion bodies are degraded and bacterial growth is restored. One physiological consequence for the cells overproducing MalE31 was to induce an extracytoplasmic stress response by increasing the expression of the heat shock protease DegP via the CpxA/CpxR two‐component signalling pathway. Furthermore, we show that the Cpx response is required to rescue the cells from the toxicity mediated by MalE31. Finally, expression of highly destabilized MalE variants that do not aggregate in the periplasm also induces the Cpx pathway, indicating that inclusion body formation is not necessary to activate this specific extracytoplasmic stress regulatory system.
Analytical Chemistry | 2012
Linda Payet; Marlène Martinho; Manuela Pastoriza-Gallego; Jean-Michel Betton; Loïc Auvray; Jérôme Mathé
The nanopore technique has great potential to discriminate conformations of proteins. It is a very interesting system to mimic and understand the process of translocation of biomacromolecules through a cellular membrane. In particular, the unfolding and folding of proteins before and after going through the nanopore are not well understood. We study the thermal unfolding of a protein, probed by two protein nanopores: aerolysin and α-hemolysin. At room temperature, the native folded protein does not enter into the pore. When we increase the temperature from 25 to 50 °C, the molecules unfold and the event frequency of current blockade increases. A similar sigmoid function fits the normalized event frequency evolution for both nanopores, thus the unfolding curve does not depend on the structure and the net charge of the nanopore. We performed also a circular dichroism bulk experiment. We obtain the same melting temperature (around 45 °C) using the bulk and single molecule techniques.
Microbial Cell Factories | 2004
Marika Miot; Jean-Michel Betton
The proper functioning of extracytoplasmic proteins requires their export to, and productive folding in, the correct cellular compartment. All proteins in Escherichia coli are initially synthesized in the cytoplasm, then follow a pathway that depends upon their ultimate cellular destination. Many proteins destined for the periplasm are synthesized as precursors carrying an N-terminal signal sequence that directs them to the general secretion machinery at the inner membrane. After translocation and signal sequence cleavage, the newly exported mature proteins are folded and assembled in the periplasm. Maintaining quality control over these processes depends on chaperones, folding catalysts, and proteases. This article summarizes the general principles which control protein folding in the bacterial periplasm by focusing on the periplasmic maltose-binding protein.
ACS Chemical Biology | 2012
Céline Merstorf; Benjamin Cressiot; Manuela Pastoriza-Gallego; Abdelghani Oukhaled; Jean-Michel Betton; Loïc Auvray
Understanding protein folding remains a challenge. A difficulty is to investigate experimentally all the conformations in the energy landscape. Only single molecule methods, fluorescence and force spectroscopy, allow observing individual molecules along their folding pathway. Here we observe that single-nanopore recording can be used as a new single molecule method to explore the unfolding transition and to examine the conformational space of native or variant proteins. We show that we can distinguish unfolded states from partially folded ones with the aerolysin pore. The unfolding transition curves of the destabilized variant are shifted toward the lower values of the denaturant agent compared to the wild type protein. The dynamics of the partially unfolded wild type protein follows a first-order transition. The denaturation curve obtained with the aerolysin pore is similar to that obtained with the α-hemolysin pore. The nanopore geometry or net charge does not influence the folding transition but changes the dynamics.
Journal of Biological Chemistry | 1998
Jean-Michel Betton; Nathalie Sassoon; Maurice Hofnung; Michel Laurent
The periplasmic fates of misfolded MalE31, a defective folding mutant of the maltose-binding protein, were determined by manipulating two cellular activities affecting the protein folding pathway in host cells: (i) the malEppromoter activity, which is controlled by the transcriptional activator MalT, and (ii) the DegP and Protease III periplasmic proteolytic activity. At a low level of expression, the degradation of misfolded MalE31 was partially impaired in cells lacking DegP or Protease III. At a high level of expression, misfolded MalE31 rapidly formed periplasmic inclusion bodies and thus escaped degradation. However, the manipulated host cell activities did not enhance the production of periplasmic, soluble MalE31. A kinetic competition between folding, aggregation, and degradation is proposed as a general model for the biogenesis of periplasmic proteins.