Jean-Michel Courty
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jean-Michel Courty.
Physical Review Letters | 2002
F. Treussart; Romain Alléaume; V. Le Floc'h; Liantuan Xiao; Jean-Michel Courty; Jean-François Roch
We studied intensity fluctuations of a single photon source relying on the pulsed excitation of the fluorescence of a single molecule at room temperature. We directly measured the Mandel parameter Q(T) over 4 orders of magnitude of observation time scale T by recording every photocount. On time scale of a few excitation periods, sub-Poissonian statistics is clearly observed and the probablility of two-photons events is 10 times smaller than Poissonian pulses. On longer times, blinking in the fluorescence, due to the molecular triplet state, produces an excess of noise.
Applied Physics B | 1992
Jean-François Roch; G. Roger; Jean-Michel Courty; Serge Reynaud
We review the schemes which have been implemented, in order to achieve quantum non-demolition (QND) measurements in the optical domain. The simplest schemes can be obtained using the optical Kerr effect, which yields a crossed-phase modulation coupling between two light beams. Other schemes use either independently generated squeezed light, or coupled-mode parametric amplifiers. These various schemes can be characterized using three criteria, which describe, respectively, the quality of the quantum measurement, the non-destruction of the signal, and the conditional variance of the output signal beam, given the output “meter” beam (quantum-state preparation criterion). We show that quantitative limits can be defined with respect to these criteria, delimiting “classical” and “quantum” domains of operation. Then we present in more detail a new experimental implementation of QND measurements, using three-level atoms inside a doubly-resonant optical cavity.
European Physical Journal D | 2001
Jean-Michel Courty; A. Heidmann; M. Pinard
Abstract:Thermal noise of a mirror can be reduced by cold damping. The displacement is measured with a high-finesse cavity and controlled with the radiation pressure of a modulated light beam. We establish the general quantum limits of noise in cold damping mechanisms and we show that the optomechanical system allows to reach these limits. Displacement noise can be arbitrarily reduced in a narrow frequency band. In a wide-band analysis we show that thermal fluctuations are reduced as with classical damping whereas quantum zero-point fluctuations are left unchanged. The only limit of cold damping is then due to zero-point energy of the mirror.
Journal of Optics B-quantum and Semiclassical Optics | 1999
Hichem Eleuch; Jean-Michel Courty; Gaëtan Messin; Claude Fabre; E. Giacobino
A theoretical investigation of cavity QED effects in semiconductor microcavities containing quantum wells is presented. A model Hamiltonian is used to derive equations of motion for the quantum photon and exciton fields in the cavity. Quantum effects such as squeezing and antibunching are predicted in the light field going out of the cavity under irradiation by a coherent laser field, if exciton-phonon scattering is weak enough. Exciton-phonon scattering is shown to destroy the nonclassical effects and to yield excess noise in the output field.
Experimental Astronomy | 2009
Bruno Christophe; P. H. Andersen; John D. Anderson; Sami W. Asmar; Ph. Bério; Orfeu Bertolami; R. Bingham; F. Bondu; Ph. Bouyer; Stefanie Bremer; Jean-Michel Courty; H. Dittus; Bernard Foulon; P. J. S. Gil; Ulrich Johann; J. F. Jordan; B. Kent; Claus Lämmerzahl; Agnès Levy; Gilles Metris; O. Olsen; Jorge Páramos; J. D. Prestage; Sergei V. Progrebenko; Ernst M. Rasel; A. Rathke; Serge Reynaud; Benny Rievers; E. Samain; T. J. Sumner
The Solar System Odyssey mission uses modern-day high-precision experimental techniques to test the laws of fundamental physics which determine dynamics in the solar system. It could lead to major discoveries by using demonstrated technologies and could be flown within the Cosmic Vision time frame. The mission proposes to perform a set of precision gravitation experiments from the vicinity of Earth to the outer Solar System. Its scientific objectives can be summarized as follows: (1) test of the gravity force law in the Solar System up to and beyond the orbit of Saturn; (2) precise investigation of navigation anomalies at the fly-bys; (3) measurement of Eddington’s parameter at occultations; (4) mapping of gravity field in the outer solar system and study of the Kuiper belt. To this aim, the Odyssey mission is built up on a main spacecraft, designed to fly up to 13 AU, with the following components: (a) a high-precision accelerometer, with bias-rejection system, measuring the deviation of the trajectory from the geodesics, that is also giving gravitational forces; (b) Ka-band transponders, as for Cassini, for a precise range and Doppler measurement up to 13 AU, with additional VLBI equipment; (c) optional laser equipment, which would allow one to improve the range and Doppler measurement, resulting in particular in an improved measurement (with respect to Cassini) of the Eddington’s parameter. In this baseline concept, the main spacecraft is designed to operate beyond the Saturn orbit, up to 13 AU. It experiences multiple planetary fly-bys at Earth, Mars or Venus, and Jupiter. The cruise and fly-by phases allow the mission to achieve its baseline scientific objectives [(1) to (3) in the above list]. In addition to this baseline concept, the Odyssey mission proposes the release of the Enigma radio-beacon at Saturn, allowing one to extend the deep space gravity test up to at least 50 AU, while achieving the scientific objective of a mapping of gravity field in the outer Solar System [(4) in the above list].
european quantum electronics conference | 2003
A. Heidmann; Jean-Michel Courty; M. Pinard
We show that quantum noise in very sensitive interferometric measurements such as gravitational-wave detectors can be drastically modified by quantum feedback. We present a new scheme based on active control to lock the motion of a mirror to a reference mirror at the quantum level. This simple technique allows one to reduce quantum effects of radiation pressure and to greatly enhance the sensitivity of the detection.
New Journal of Physics | 2004
Romain Alléaume; François Treussart; Jean-Michel Courty; Jean-François Roch
In a recent experiment, we reported the time-domain intensity noise measurement of a single-photon source relying on single-molecule fluorescence control. In this paper, we present data processing starting from photocount timestamps. The theoretical analytical expression of the time-dependent Mandel parameter Q(T) of an intermittent single-photon source is derived from ON?OFF dynamics. Finally, source intensity noise analysis, using the Mandel parameter, is quantitatively compared with the usual approach relying on the time autocorrelation function, both methods yielding the same molecular dynamical parameters.
Applied Physics B | 1995
Astrid Lambrecht; Jean-Michel Courty; Serge Reynaud; E. Giacobino
Laser-cooled and trapped cesium atoms have been used as a nonlinear medium in a nearly resonant cavity. A study of the semiclassical dynamics of the system was performed, showing bistability and instabilities. In the quantum domain, squeezing in a probe beam having interacted with this system was demonstrated.
Optics Communications | 1992
Jean-Michel Courty; Serge Reynaud
Abstract The effectiveness of quantum non-demolition (QND) measurements must be characterized by quantities which can be determined experimentally and theoretically for nonideal QND devices. We define equivalent input noises which can conveniently be used as such quantities.
Applied Physics B | 1992
L. Hilico; Jean-Michel Courty; Claude Fabre; E. Giacobino; I. Abram; J. L. Oudar
We assess in this paper the advantages and drawbacks of different nonlinear χ(3) materials for the purpose of generating squeezed light. The respective roles of nonlinearity, losses, response time and excess noise are discussed. Two simple models of nonlinear media are considered more precisely: parametric media with linear losses and an empty cavity with moving mirrors.