Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jean-Michel Davière is active.

Publication


Featured researches published by Jean-Michel Davière.


Nature | 2008

A molecular framework for light and gibberellin control of cell elongation

Miguel de Lucas; Jean-Michel Davière; Mariana Rodríguez-Falcón; Mariela Pontin; Juan Manuel Iglesias-Pedraz; Séverine Lorrain; Christian Fankhauser; Miguel A. Blázquez; Elena Titarenko; Salomé Prat

Cell elongation during seedling development is antagonistically regulated by light and gibberellins (GAs). Light induces photomorphogenesis, leading to inhibition of hypocotyl growth, whereas GAs promote etiolated growth, characterized by increased hypocotyl elongation. The mechanism underlying this antagonistic interaction remains unclear. Here we report on the central role of the Arabidopsis thaliana nuclear transcription factor PIF4 (encoded by PHYTOCHROME INTERACTING FACTOR 4) in the positive control of genes mediating cell elongation and show that this factor is negatively regulated by the light photoreceptor phyB (ref. 4) and by DELLA proteins that have a key repressor function in GA signalling. Our results demonstrate that PIF4 is destabilized by phyB in the light and that DELLAs block PIF4 transcriptional activity by binding the DNA-recognition domain of this factor. We show that GAs abrogate such repression by promoting DELLA destabilization, and therefore cause a concomitant accumulation of free PIF4 in the nucleus. Consistent with this model, intermediate hypocotyl lengths were observed in transgenic plants over-accumulating both DELLAs and PIF4. Destabilization of this factor by phyB, together with its inactivation by DELLAs, constitutes a protein interaction framework that explains how plants integrate both light and GA signals to optimize growth and development in response to changing environments.


Development | 2013

Gibberellin signaling in plants

Jean-Michel Davière; Patrick Achard

The plant hormone gibberellin (GA) regulates major aspects of plant growth and development. The role of GA in determining plant stature had major impacts on agriculture in the 1960s, and the development of semi-dwarf varieties that show altered GA responses contributed to a huge increase in grain yields during the ‘green revolution’. The past decade has brought great progress in understanding the molecular basis of GA action, with the cloning and characterization of GA signaling components. Here, we review the molecular basis of the GA signaling pathway, from the perception of GA to the regulation of downstream genes.


The Plant Cell | 2012

The Arabidopsis DELLA RGA-LIKE3 Is a Direct Target of MYC2 and Modulates Jasmonate Signaling Responses

Jean-Michel Davière; Soizic Cheminant; Thomas Regnault; Nicolas Baumberger; Dimitri Heintz; Rachel Baltz; Pascal Genschik; Patrick Achard

The DELLA proteins function as negative regulators of the gibberellin (GA) signaling pathway. This article reports that RGL3 is a distinct DELLA protein that acts as an integrating factor that links GA and jasmonate signaling to enable adaptive regulation of plant resistance to pathogens. Gibberellins (GAs) are plant hormones involved in the regulation of plant growth in response to endogenous and environmental signals. GA promotes growth by stimulating the degradation of nuclear growth–repressing DELLA proteins. In Arabidopsis thaliana, DELLAs consist of a small family of five proteins that display distinct but also overlapping functions in repressing GA responses. This study reveals that DELLA RGA-LIKE3 (RGL3) protein is essential to fully enhance the jasmonate (JA)-mediated responses. We show that JA rapidly induces RGL3 expression in a CORONATINE INSENSITIVE1 (COI1)– and JASMONATE INSENSITIVE1 (JIN1/MYC2)–dependent manner. In addition, we demonstrate that MYC2 binds directly to RGL3 promoter. Furthermore, we show that RGL3 (like the other DELLAs) interacts with JA ZIM-domain (JAZ) proteins, key repressors of JA signaling. These findings suggest that JA/MYC2-dependent accumulation of RGL3 represses JAZ activity, which in turn enhances the expression of JA-responsive genes. Accordingly, we show that induction of primary JA-responsive genes is reduced in the rgl3-5 mutant and enhanced in transgenic lines overexpressing RGL3. Hence, RGL3 positively regulates JA-mediated resistance to the necrotroph Botrytis cinerea and susceptibility to the hemibiotroph Pseudomonas syringae. We propose that JA-mediated induction of RGL3 expression is of adaptive significance and might represent a recent functional diversification of the DELLAs.


Current Opinion in Genetics & Development | 2008

Transcriptional factor interaction: a central step in DELLA function

Jean-Michel Davière; Miguel de Lucas; Salomé Prat

Gibberellins (GAs) affect several growth and developmental responses during the plant life cycle. Components essential for GA perception and GA signaling have been identified in rice and Arabidopsis and are conserved among vascular plants but not in Physcomitrella patens. The recent observation that DELLAs bind in nuclei to different members of the phytochrome interacting factor family, to block their transcriptional activity, is an important breakthrough to the understanding of the functional mechanism of these repressors. Beyond its role in GA-signaling repression, DELLAs were found to regulate GA homeostasis and to represent a convergence point for other hormone-signaling pathways. These repressors impose a growth restraint under environmental adverse conditions, allowing land plants to adapt their life cycle to the changing environment.


Molecular Plant | 2016

A Pivotal Role of DELLAs in Regulating Multiple Hormone Signals

Jean-Michel Davière; Patrick Achard

Plant phenotypic plasticity is controlled by diverse hormone pathways, which integrate and convey information from multiple developmental and environmental signals. Moreover, in plants many processes such as growth, development, and defense are regulated in similar ways by multiple hormones. Among them, gibberellins (GAs) are phytohormones with pleiotropic actions, regulating various growth processes throughout the plant life cycle. Previous work has revealed extensive interplay between GAs and other hormones, but the molecular mechanism became apparent only recently. Molecular and physiological studies have demonstrated that DELLA proteins, considered as master negative regulators of GA signaling, integrate multiple hormone signaling pathways through physical interactions with transcription factors or regulatory proteins from different families. In this review, we summarize the latest progress in GA signaling and its direct crosstalk with the main phytohormone signaling, emphasizing the multifaceted role of DELLA proteins with key components of major hormone signaling pathways.


Current Biology | 2014

Class I TCP-DELLA Interactions in Inflorescence Shoot Apex Determine Plant Height

Jean-Michel Davière; Thomas Regnault; Nicolas Baumberger; Herfried Eisler; Pascal Genschik; Patrick Achard

Regulation of plant height, one of the most important agronomic traits, is the focus of intensive research for improving crop performance. Stem elongation takes place as a result of repeated cell divisions and subsequent elongation of cells produced by apical and intercalary meristems. The gibberellin (GA) phytohormones have long been known to control stem and internodal elongation by stimulating the degradation of nuclear growth-repressing DELLA proteins; however, the mechanism allowing GA-responsive growth is only slowly emerging. Here, we show that DELLAs directly regulate the activity of the plant-specific class I TCP transcription factor family, key regulators of cell proliferation. Our results demonstrate that class I TCP factors directly bind the promoters of core cell-cycle genes in Arabidopsis inflorescence shoot apices while DELLAs block TCP function by binding to their DNA-recognition domain. GAs antagonize such repression by promoting DELLA destruction and therefore cause a concomitant accumulation of TCP factors on promoters of cell-cycle genes. Consistent with this model, the quadruple mutant tcp8 tcp14 tcp15 tcp22 exhibits severe dwarfism and reduced responsiveness to GA action. Altogether, we conclude that GA-regulated DELLA-TCP interactions in inflorescence shoot apex provide a novel mechanism to control plant height.


Genes & Development | 2014

BR-dependent phosphorylation modulates PIF4 transcriptional activity and shapes diurnal hypocotyl growth.

Stella Bernardo-García; Miguel de Lucas; Cristina Martínez; Ana Espinosa‐Ruiz; Jean-Michel Davière; Salomé Prat

Signaling by the hormones brassinosteroid (BR) and gibberellin (GA) is critical to normal plant growth and development and is required for hypocotyl elongation in response to dark and elevated temperatures. Active BR signaling is essential for GA promotion of hypocotyl growth and suppresses the dwarf phenotype of GA mutants. Cross-talk between these hormones occurs downstream from the DELLAs, as GA-induced destabilization of these GA signaling repressors is not affected by BRs. Here we show that the light-regulated PIF4 (phytochrome-interacting factor 4) factor is a phosphorylation target of the BR signaling kinase BRASSINOSTEROID-INSENSITIVE 2 (BIN2), which marks this transcriptional regulator for proteasome degradation. Expression of a mutated PIF41A protein lacking a conserved BIN2 phosphorylation consensus causes a severe elongated phenotype and strongly up-regulated expression of the gene targets. However, PIF41A is not able to suppress the dwarf phenotype of the bin2-1 mutant with constitutive activation of this kinase. PIFs were shown to be required for the constitutive BR response of bes1-D and bzr1-1D mutants, these factors acting in an interdependent manner to promote cell elongation. Here, we show that bes1-D seedlings are still repressed by the inhibitor BRZ in the light and that expression of the nonphosphorylatable PIF41A protein makes this mutant fully insensitive to brassinazole (BRZ). PIF41A is preferentially stabilized at dawn, coinciding with the diurnal time of maximal growth. These results uncover a main role of BRs in antagonizing light signaling by inhibiting BIN2-mediated destabilization of the PIF4 factor. This regulation plays a prevalent role in timing hypocotyl elongation to late night, before light activation of phytochrome B (PHYB) and accumulation of DELLAs restricts PIF4 transcriptional activity.


Current Biology | 2015

ELF3-PIF4 Interaction Regulates Plant Growth Independently of the Evening Complex

Cristina Nieto; Vadir López-Salmerón; Jean-Michel Davière; Salomé Prat

The circadian clock plays a pivotal role in the control of Arabidopsis hypocotyl elongation by regulating rhythmic expression of the bHLH factors PHYTOCHROME INTERACTING FACTOR 4 and 5 (PIF4 and 5). Coincidence of increased PIF4/PIF5 transcript levels with the dark period allows nuclear accumulation of these factors, and in short days it phases maximal hypocotyl growth at dawn. During early night, PIF4 and PIF5 transcription is repressed by the Evening Complex (EC) proteins EARLY FLOWERING3 (ELF3), EARLY FLOWERING4 (ELF4), and LUX ARRHYTHMO (LUX). While ELF3 has an essential role in EC complex assembly, several lines of evidence indicate that this protein controls plant growth via other mechanisms that are presently unknown. Here, we show that the ELF3 and PIF4 proteins interact in an EC-independent manner, and that this interaction prevents PIF4 from activating its transcriptional targets. We also show that PIF4 overexpression leads to ELF3 protein destabilization, and that this effect is mediated indirectly by negative feedback regulation of photoactive PHYTOCHROME B (phyB). Physical interaction of the phyB photoreceptor with ELF3 has been reported, but its functional relevance remains poorly understood. Our findings establish that phyB is needed for ELF3 accumulation in the light, most likely by competing for CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1)-mediated ubiquitination and the proteasomal degradation of ELF3. Our results explain the short hypocotyl phenotype of ELF3 overexpressors, despite their normal clock function, and provide a molecular framework for understanding how warm temperatures promote hypocotyl elongation and affect the endogenous clock.


Nature plants | 2015

The gibberellin precursor GA12 acts as a long-distance growth signal in Arabidopsis

Thomas Regnault; Jean-Michel Davière; Lali Sakvarelidze-Achard; Dimitri Heintz; Esther Carrera Bergua; Isabel Díaz; Fan Gong; Peter Hedden; Patrick Achard

The gibberellin (GA) phytohormones play important roles in plant growth and development, promoting seed germination, elongation growth and reproductive development1. Over the years, substantial progress has been made in understanding the regulation of GA signalling and metabolism, which ensures appropriate levels of GAs for growth and development2. Moreover, an additional level of regulation may reside in the transport of GAs from production sites to recipient tissues that require GAs for growth. Although there is considerable evidence suggesting the existence of short- and long-distance movement of GAs in plants3–8, the nature and the biological properties of this transport are not yet understood. Here, we combine biochemical and conventional micrografting experiments in Arabidopsis thaliana to show that the GA precursor GA12, although biologically inactive by itself, is the major mobile GA signal over long distances. Quantitative analysis of endogenous GAs in xylem and phloem exudates further indicates that GA12 moves through the plant vascular system. Finally, we demonstrate that GA12 is functional in recipient tissues, supporting growth via the activation of the GA signalling cascade. Collectively, these results reveal the existence of long-range transport of endogenous GA12 in plants that may have implications for the control of developmental phase transitions and the adaptation to adverse environments.


New Phytologist | 2014

RoKSN, a floral repressor, forms protein complexes with RoFD and RoFT to regulate vegetative and reproductive development in rose

Marie Randoux; Jean-Michel Davière; Julien Jeauffre; Tatiana Thouroude; Sandrine Pierre; Youness Toualbia; Justine Perrotte; Jean‐Paul Reynoird; Marie‐José Jammes; Laurence Hibrand-Saint Oyant; Fabrice Foucher

FT/TFL1 family members have been known to be involved in the development and flowering in plants. In rose, RoKSN, a TFL1 homologue, is a key regulator of flowering, whose absence causes continuous flowering. Our objectives are to functionally validate RoKSN and to explore its mode of action in rose. We complemented Arabidopsis tfl1 mutants and ectopically expressed RoKSN in a continuous-flowering (CF) rose. Using different protein interaction techniques, we studied RoKSN interactions with RoFD and RoFT and possible competition. In Arabidopsis, RoKSN complemented the tfl1 mutant by rescuing late flowering and indeterminate growth. In CF roses, the ectopic expression of RoKSN led to the absence of flowering. Different branching patterns were observed and some transgenic plants had an increased number of leaflets per leaf. In these transgenic roses, floral activator transcripts decreased. Furthermore, RoKSN was able to interact both with RoFD and the floral activator, RoFT. Protein interaction experiments revealed that RoKSN and RoFT could compete with RoFD for repression and activation of blooming, respectively. We conclude that RoKSN is a floral repressor and is also involved in the vegetative development of rose. RoKSN forms a complex with RoFD and could compete with RoFT for repression of flowering.

Collaboration


Dive into the Jean-Michel Davière's collaboration.

Top Co-Authors

Avatar

Patrick Achard

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Salomé Prat

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Dimitri Heintz

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Miguel de Lucas

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicolas Baumberger

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Pascal Genschik

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Isabel Díaz

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge