Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jean-Michel Deniau is active.

Publication


Featured researches published by Jean-Michel Deniau.


The Journal of Neuroscience | 2002

Synaptic Convergence of Motor and Somatosensory Cortical Afferents onto GABAergic Interneurons in the Rat Striatum

Sankari Ramanathan; Jason J. Hanley; Jean-Michel Deniau; J. Paul Bolam

Cortical afferents to the basal ganglia, and in particular the corticostriatal projections, are critical in the expression of basal ganglia function in health and disease. The corticostriatal projections are topographically organized but also partially overlap and interdigitate. To determine whether projections from distinct cortical areas converge at the level of single interneurons in the striatum, double anterograde labeling from the primary motor (M1) and primary somatosensory (S1) cortices in the rat, was combined with immunolabeling for parvalbumin (PV), to identify one population of striatal GABAergic interneurons. Cortical afferents from M1 and S1 gave rise to distinct, but partially overlapping, arbors of varicose axons in the striatum. PV-positive neurons were often apposed by cortical terminals and, in many instances, apposed by terminals from both cortical areas. Frequently, individual cortical axons formed multiple varicosities apposed to the same PV-positive neuron. Electron microscopy confirmed that the cortical terminals formed asymmetric synapses with the dendrites and perikarya of PV-positive neurons as well as unlabelled dendritic spines. Correlated light and electron microscopy revealed that individual PV-positive neurons received synaptic input from axon terminals derived from both motor and somatosensory cortices. These results demonstrate that, within areas of overlap of functionally distinct projections, there is synaptic convergence at the single cell level. Sensorimotor integration in the basal ganglia is thus likely to be mediated, at least in part, by striatal GABAergic interneurons. Furthermore, our findings suggest that the pattern of innervation of GABAergic interneurons by cortical afferents is different from the cortical innervation of spiny projection neurons.


PLOS ONE | 2009

Striatal Medium-Sized Spiny Neurons: Identification by Nuclear Staining and Study of Neuronal Subpopulations in BAC Transgenic Mice

Miriam Matamales; Jesus Bertran-Gonzalez; Lucas Salomon; Bertrand Degos; Jean-Michel Deniau; Emmanuel Valjent; Denis Hervé; Jean-Antoine Girault

Precise identification of neuronal populations is a major challenge in neuroscience. In the striatum, more than 95% of neurons are GABAergic medium-sized spiny neurons (MSNs), which form two intermingled populations distinguished by their projections and protein content. Those expressing dopamine D1-receptors (D1Rs) project preferentially to the substantia nigra pars reticulata (SNr), whereas those expressing dopamine D2- receptors (D2Rs) project preferentially to the lateral part of the globus pallidus (LGP). The degree of segregation of these populations has been a continuous subject of debate, and the recent introduction of bacterial artificial chromosome (BAC) transgenic mice expressing fluorescent proteins driven by specific promoters was a major progress to facilitate striatal neuron identification. However, the fraction of MSNs labeled in these mice has been recently called into question, casting doubt on the generality of results obtained with such approaches. Here, we performed an in-depth quantitative analysis of striatal neurons in drd1a-EGFP and drd2-EGFP mice. We first quantified neuronal and non-neuronal populations in the striatum, based on nuclear staining with TO-PRO-3, and immunolabeling for NeuN, DARPP-32 (dopamine- and cAMP-regulated phosphoprotein Mr∼32,000), and various markers for interneurons. TO-PRO-3 staining was sufficient to identify MSNs by their typical nuclear morphology and, with a good probability, interneuron populations. In drd1a-EGFP/drd2-EGFP double transgenic mice all MSNs expressed EGFP, which was driven in about half of them by drd1a promoter. Retrograde labeling showed that all MSNs projecting to the SNr expressed D1R and very few D2R (<1%). In contrast, our results were compatible with the existence of some D1R-EGFP-expressing fibers giving off terminals in the LGP. Thus, our study shows that nuclear staining is a simple method for identifying MSNs and other striatal neurons. It also unambiguously confirms the degree of segregation of MSNs in the mouse striatum and allows the full exploitation of results obtained with BAC-transgenic mice.


The Journal of Neuroscience | 2006

Distinct Patterns of Striatal Medium Spiny Neuron Activity during the Natural Sleep–Wake Cycle

Séverine Mahon; Nicolas Vautrelle; Laurent Pezard; Seán J. Slaght; Jean-Michel Deniau; Guy Chouvet; Stéphane Charpier

Striatal medium-sized spiny neurons (MSNs) integrate and convey information from the cerebral cortex to the output nuclei of the basal ganglia. Intracellular recordings from anesthetized animals show that MSNs undergo spontaneous transitions between hyperpolarized and depolarized states. State transitions, regarded as necessary for eliciting action potential firing in MSNs, are thought to control basal ganglia function by shaping striatal output. Here, we use an anesthetic-free rat preparation to show that the intracellular activity of MSNs is not stereotyped and depends critically on vigilance state. During slow-wave sleep, much as during anesthesia, MSNs displayed rhythmic step-like membrane potential shifts, correlated with cortical field potentials. However, wakefulness was associated with a completely different pattern of temporally disorganized depolarizing synaptic events of variable amplitude. Transitions from slow-wave sleep to wakefulness converted striatal discharge from a cyclic brisk firing to an irregular pattern of action potentials. These findings illuminate different capabilities of information processing in basal ganglia networks, suggesting in particular that a novel style of striatal computation is associated with the waking state.


European Journal of Neuroscience | 2010

Deep brain stimulation mechanisms: beyond the concept of local functional inhibition

Jean-Michel Deniau; Bertrand Degos; Clémentine Bosch; Nicolas Maurice

Deep brain electrical stimulation has become a recognized therapy in the treatment of a variety of motor disorders and has potentially promising applications in a wide range of neurological diseases including neuropsychiatry. Behavioural observation that electrical high‐frequency stimulation of a given brain area induces an effect similar to a lesion suggested a mechanism of functional inhibition. In vitro and in vivo experiments as well as per operative recordings in patients have revealed a variety of effects involving local changes of neuronal excitability as well as widespread effects throughout the connected network resulting from activation of axons, including antidromic activation. Here we review current data regarding the local and network activity changes induced by high‐frequency stimulation of the subthalamic nucleus and discuss this in the context of motor restoration in Parkinson’s disease. Stressing the important functional consequences of axonal activation in deep brain stimulation mechanisms, we highlight the importance of developing anatomical knowledge concerning the fibre connections of the putative therapeutic targets.


The Journal of Neuroscience | 2007

Activity of Ventral Medial Thalamic Neurons during Absence Seizures and Modulation of Cortical Paroxysms by the Nigrothalamic Pathway

Jeanne T. Paz; Mario Chavez; Sandrine Saillet; Jean-Michel Deniau; Stéphane Charpier

Absence seizures are characterized by bilaterally synchronous spike-and-wave discharges (SWDs) in the electroencephalogram, which reflect abnormal oscillations in corticothalamic networks. Although it was suggested that basal ganglia could modulate, via their feedback circuits to the cerebral cortex, the occurrence of SWDs, the cellular and network mechanisms underlying such a subcortical control of absence seizures remain unknown. The GABAergic projections from substantia nigra pars reticulata (SNR) to thalamocortical neurons of the ventral medial (VM) thalamic nucleus provide a potent network for the control of absence seizures by basal ganglia. The present in vivo study provides the first description of the activity of VM thalamic neurons during seizures in the genetic absence epilepsy rats from Strasbourg, a well established model of absence epilepsy. Cortical paroxysms were accompanied in VM thalamic neurons by rhythmic bursts of action potentials. Pharmacological blockade of excitatory inputs of nigrothalamic neurons led to a transient interruption of SWDs, correlated with a change in the activity of thalamic cells, which was increased in frequency and converted into a sustained arrhythmic firing pattern. Simultaneously, cortical neurons exhibited a decrease in their firing rate that was associated with an increase in membrane polarization and a decrease in input resistance. These new findings demonstrate that an inhibition of SNR neurons changes the activity of their thalamic targets, which in turn could affect cortical neurons excitability and, consequently, the generation of cortical epileptic discharges. Thus, the nigro-thalamo-cortical pathway may provide an on-line system control of absence seizures.


Progress in Brain Research | 2007

The pars reticulata of the substantia nigra: a window to basal ganglia output.

Jean-Michel Deniau; Philippe Mailly; N. Maurice; Stéphane Charpier

Together with the internal segment of the globus pallidus (GP(i)), the pars reticulata of the substantia nigra (SNr) provides a main output nucleus of the basal ganglia (BG) where the final stage of information processing within this system takes place. In the last decade, progress on the anatomical organization and functional properties of BG output neurons have shed some light on the mechanisms of integration taking place in these nuclei and leading to normal and pathological BG outflow. In this review focused on the SNr, after describing how the anatomical arrangement of nigral cells and their afferents determines specific input-output registers, we examine how the basic electrophysiological properties of the cells and their interaction with synaptic inputs contribute to the spatio-temporal shaping of BG output. The reported data show that the intrinsic membrane properties of the neurons subserves a tonic discharge allowing BG to gate the transmission of information to motor and cognitive systems thereby contributing to appropriate selection of behavior.


Neuroscience | 2005

Anatomical evidence for direct connections between the shell and core subregions of the rat nucleus accumbens

Y.C. van Dongen; Jean-Michel Deniau; Cyriel M. A. Pennartz; Y. Galis-de Graaf; Pieter Voorn; Anne-Marie Thierry; Henk J. Groenewegen

The nucleus accumbens is thought to subserve different aspects of adaptive and emotional behaviors. The anatomical substrates for such actions are multiple, parallel ventral striatopallidal output circuits originating in the nucleus accumbens shell and core subregions. Several indirect ways of interaction between the two subregions and their associated circuitry have been proposed, in particular through striato-pallido-thalamic and dopaminergic pathways. In this study, using anterograde neuroanatomical tracing with Phaseolus vulgaris-leucoagglutinin and biotinylated dextran amine as well as single-cell juxtacellular filling with neurobiotin, we investigated the intra-accumbens distribution of local axon collaterals for the identification of possible direct connections between the shell and core subregions. Our results show widespread intra-accumbens projection patterns, including reciprocal projections between specific parts of the shell and core. However, fibers originating in the core reach more distant areas of the shell, including the rostral pole (i.e. the calbindin-poor part of the shell anterior to the core) and striatal parts of the olfactory tubercle, than those arising in the shell and projecting to the core. The latter projections are more restricted to the border region between the shell and core. The density of the fiber labeling within both the shell and core was very similar. Moreover, specific intrinsic projections within shell and core were identified, including a relatively strong projection from the rostral pole to the rostral shell, reciprocal projections between the rostral and caudal shell, as well as projections within the core that have a caudal-to-rostral predominance. The results of the juxtacellular filling experiments show that medium-sized spiny projection neurons and medium-sized aspiny neurons (most likely fast-spiking) contribute to these intra-accumbens projections. While such neurons are GABAergic, the intrastriatal projection patterns indicate the existence of lateral inhibitory interactions within, as well as between, shell and core subregions of the nucleus accumbens.


The Journal of Neuroscience | 2005

Neuroleptic-Induced Catalepsy: Electrophysiological Mechanisms of Functional Recovery Induced by High-Frequency Stimulation of the Subthalamic Nucleus

Bertrand Degos; Jean-Michel Deniau; Anne-Marie Thierry; J. Glowinski; Laurent Pezard; Nicolas Maurice

High-frequency stimulation (HFS) of the subthalamic nucleus (STN) remarkably alleviates motor disorders in parkinsonian patients. The mechanisms by which STN HFS exerts its beneficial effects were investigated in anesthetized rats, using a model of acute interruption of dopaminergic transmission. Combined systemic injections of SCH-23390 [R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5,-tetrahydro-1H-3-benzazepine] and raclopride, antagonists of the D1 and D2 classes of dopaminergic receptors, respectively, were performed, and the parameters of STN HFS that reversed the neuroleptic-induced catalepsy were determined in freely moving animals. The effects of neuroleptics and the impact of STN HFS applied at parameters alleviating neuroleptic-induced catalepsy were analyzed in the substantia nigra pars reticulata (SNR), a major basal ganglia output structure, by recording the neuronal firing pattern and the responses evoked by cortical stimulation. Neuroleptic injection altered the tonic and regular mode of discharge of SNR neurons, most of them becoming irregular with bursts of spikes and pauses. The inhibitory component of the cortically evoked response, which is attributable to the activation of the direct striatonigral circuit, was decreased, whereas the late excitatory response resulting from the indirect striato-pallido-subthalamo-nigral circuit was reinforced. During STN HFS, the spontaneous firing of SNR cells was either increased or decreased with a global enhancement of the firing rate in the overall population of SNR cells recorded. However, in all of the cases, SNR firing pattern was regularized, and the bias between the trans-striatal and trans-subthalamic circuits was reversed. By these effects, STN HFS restores the functional properties of the circuits by which basal ganglia contribute to motor activity.


The Journal of Neuroscience | 2005

Rhythmic bursting in the cortico-subthalamo-pallidal network during spontaneous genetically determined spike and wave discharges

Jeanne T. Paz; Jean-Michel Deniau; Stéphane Charpier

Absence seizures are characterized by impairment of consciousness associated with bilaterally synchronous spike-and-wave discharges (SWDs) in the electroencephalogram (EEG), which reflect paroxysmal oscillations in thalamocortical networks. Although recent studies suggest that the subthalamic nucleus (STN) provides an endogenous control system that influences the occurrence of absence seizures, the mechanisms of propagation of cortical epileptic discharges in the STN have never been explored. The present study provides the first description of the electrophysiological activity in the cortico-subthalamo-pallidal network during absence seizures in the genetic absence epilepsy rats from Strasbourg, a well established model of absence epilepsy. In corticosubthalamic neurons, the SWDs were associated with repetitive suprathreshold depolarizations correlated with EEG spikes. These cortical paroxysms were reflected in the STN by synchronized, rhythmic, high-frequency bursts of action potentials. Intracellular recordings revealed that the intraburst pattern in STN neurons was sculpted by an early depolarizing synaptic potential, followed by a short hyperpolarization and a rebound of excitation. The rhythmic hyperpolarizations in STN neurons during SWDs likely originate from a subpopulation of pallidal neurons exhibiting rhythmic bursting temporally correlated with the EEG spikes. The repetitive discharges in STN neurons accompanying absence seizures might convey powerful excitation to basal ganglia output nuclei and, consequently, may participate in the control of thalamocortical SWDs.


The Journal of Neuroscience | 2004

On the Activity of the Corticostriatal Networks during Spike-and-Wave Discharges in a Genetic Model of Absence Epilepsy

Seán J. Slaght; Tamar Paz; Mario Chavez; Jean-Michel Deniau; Séverine Mahon; Stéphane Charpier

Absence seizures are characterized by impairment of consciousness associated with widespread bilaterally synchronous spike-and-wave discharges (SWDs) in the electroencephalogram (EEG), which reflect highly synchronized oscillations in thalamocortical networks. Although recent pharmacological studies suggest that the basal ganglia could provide a remote control system for absence seizures, the mechanisms of propagation of epileptic discharges in these subcortical nuclei remain unknown. In the present study, we provide the first description of the electrical events in the corticostriatal pathway during spontaneous SWDs in the genetic absence epilepsy rats from Strasbourg (GAERS), a genetic model of absence epilepsy. In corticostriatal neurons, the SWDs were associated with suprathreshold rhythmic depolarizations in-phase with local EEG spikes. Consistent with this synchronized firing in their excitatory cortical afferents, striatal output neurons (SONs) exhibited, during SWDs, large-amplitude rhythmic synaptic depolarizations. However, SONs did not discharge during SWDs. Instead, the rhythmic synaptic excitation of SONs was shunted by a Cl--dependent increase in membrane conductance that was temporally correlated with bursts of action potentials in striatal GABAergic interneurons. The reduced SON excitability accompanying absence seizures may participate in the control of SWDs by affecting the flow of cortical information within the basal ganglia circuits.

Collaboration


Dive into the Jean-Michel Deniau's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henk J. Groenewegen

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Séverine Mahon

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laurent Pezard

Aix-Marseille University

View shared research outputs
Researchain Logo
Decentralizing Knowledge