Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jean-Michel Elsen is active.

Publication


Featured researches published by Jean-Michel Elsen.


Nature Genetics | 2006

A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep

Alex Clop; Fabienne Marcq; Haruko Takeda; Dimitri Pirottin; Xavier Tordoir; Bernard Bibé; Jacques Bouix; Florian Caiment; Jean-Michel Elsen; Francis Eychenne; Catherine Larzul; Elisabeth Laville; Françoise Meish; Dragan Milenkovic; James Tobin; Carole Charlier; Michel Georges

Texel sheep are renowned for their exceptional meatiness. To identify the genes underlying this economically important feature, we performed a whole-genome scan in a Romanov × Texel F2 population. We mapped a quantitative trait locus with a major effect on muscle mass to chromosome 2 and subsequently fine-mapped it to a chromosome interval encompassing the myostatin (GDF8) gene. We herein demonstrate that the GDF8 allele of Texel sheep is characterized by a G to A transition in the 3′ UTR that creates a target site for mir1 and mir206, microRNAs (miRNAs) that are highly expressed in skeletal muscle. This causes translational inhibition of the myostatin gene and hence contributes to the muscular hypertrophy of Texel sheep. Analysis of SNP databases for humans and mice demonstrates that mutations creating or destroying putative miRNA target sites are abundant and might be important effectors of phenotypic variation.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Mutation in bone morphogenetic protein receptor-IB is associated with increased ovulation rate in Booroola Mérino ewes

Philippe Mulsant; Frédéric Lecerf; Stéphane Fabre; Laurent Schibler; Philippe Monget; Isabelle Lanneluc; Claudine Pisselet; Juliette Riquet; Danielle Monniaux; Isabelle Callebaut; Edmond Cribiu; Jacques Thimonier; Jacques Teyssier; Loys Bodin; Yves Cognié; Nour Chitour; Jean-Michel Elsen

Ewes from the Booroola strain of Australian Mérino sheep are characterized by high ovulation rate and litter size. This phenotype is due to the action of the FecBB allele of a major gene named FecB, as determined by statistical analysis of phenotypic data. By genetic analysis of 31 informative half-sib families from heterozygous sires, we showed that the FecB locus is situated in the region of ovine chromosome 6 corresponding to the human chromosome 4q22–23 that contains the bone morphogenetic protein receptor IB (BMPR-IB) gene encoding a member of the transforming growth factor-β (TGF-β) receptor family. A nonconservative substitution (Q249R) in the BMPR-IB coding sequence was found to be associated fully with the hyperprolificacy phenotype of Booroola ewes. In vitro, ovarian granulosa cells from FecBB/FecBB ewes were less responsive than granulosa cells from FecB+/FecB+ ewes to the inhibitory effect on steroidogenesis of GDF-5 and BMP-4, natural ligands of BMPR-IB. It is suggested that in FecBB/FecBB ewes, BMPR-IB would be inactivated partially, leading to an advanced differentiation of granulosa cells and an advanced maturation of ovulatory follicles.


Genetics | 2008

Performance of Genomic Selection in Mice

A. Legarra; Christèle Robert-Granié; Eduardo Manfredi; Jean-Michel Elsen

Selection plans in plant and animal breeding are driven by genetic evaluation. Recent developments suggest using massive genetic marker information, known as “genomic selection.” There is little evidence of its performance, though. We empirically compared three strategies for selection: (1) use of pedigree and phenotypic information, (2) use of genomewide markers and phenotypic information, and (3) the combination of both. We analyzed four traits from a heterogeneous mouse population (http://gscan.well.ox.ac.uk/), including 1884 individuals and 10,946 SNP markers. We used linear mixed models, using extensions of association analysis. Cross-validation techniques were used, providing assumption-free estimates of predictive ability. Sampling of validation and training data sets was carried out across and within families, which allows comparing across- and within-family information. Use of genomewide genetic markers increased predictive ability up to 0.22 across families and up to 0.03 within families. The latter is not statistically significant. These values are roughly comparable to increases of up to 0.57 (across family) and 0.14 (within family) in accuracy of prediction of genetic value. In this data set, within-family information was more accurate than across-family information, and populational linkage disequilibrium was not a completely accurate source of information for genetic evaluation. This fact questions some applications of genomic selection.


Domestic Animal Endocrinology | 2002

Regulation of ovarian folliculogenesis by IGF and BMP system in domestic animals

Philippe Monget; Stéphane Fabre; Philippe Mulsant; Frédéric Lecerf; Jean-Michel Elsen; Sabine Mazerbourg; Claudine Pisselet; Danielle Monniaux

Involvement of insulin-like growth factors (IGFs) and IGF binding proteins (IGFBPs) in ovarian folliculogenesis has been extensively studied during the last decade. In all mammalian species, IGF-I stimulates granulosa cell proliferation and steroidogenesis. The concentrations of IGF-I and -II do not vary during terminal follicular growth and atresia. In contrast, the levels of IGFBP-2 and -4, as well as IGFBP-5 in ruminants, dramatically decrease and increase during terminal follicular growth and atresia, respectively. These changes are responsible for an increase and a decrease in IGF bioavailability during follicular growth and atresia, respectively. They are partly explained by changes in ovarian expression. In particular, expression of IGFBP-2 mRNA decreases during follicular growth in ovine, bovine and porcine ovaries, and expression of IGFBP-5 mRNA dramatically increases in granulosa cells of bovine and ovine atretic follicles. Changes in IGFBP-2 and -4 levels are also due to changes in intrafollicular levels of specific proteases. Recently, we have shown that the pregnancy-associated plasma protein-A (PAPP-A) is responsible for the degradation of IGFBP-4 in preovulatory follicles of domestic animals. Expression of PAPP-A mRNA is restricted to the granulosa cell compartment, and is positively correlated to expression of aromatase and LH receptor. From recent evidence, the bone morphogenetic protein (BMP) family would also play a key role in ovarian physiology of domestic animals. In particular, we and others have recently shown that a non-conservative substitution (Q249R) in the bone morphogenetic protein-receptor type IB (BMPR-IB) coding sequence is fully associated with the hyperprolific phenotype of FecB(B)/FecB(B) Booroola ewes. BMP-4 and GDF-5, natural ligands of BMPR-IB, strongly inhibit secretion of progesterone by ovine granulosa cells in vitro, but granulosa cells from FecB(B)/FecB(B) ewes are less responsive than those from FecB(+)/FecB(+) to the action of these peptides. It is suggested that in FecB(B)/FecB(B) ewes, Q249R substitution would impair the function of BMPR-IB, leading to a precocious differentiation of granulosa cells and of follicular maturation. Interestingly, recent findings have described mutations in BMP-15 gene associated with hyperprolific phenotypes in Inverdale and Hanna ewes, suggesting that the BMP pathway plays a crucial role in the control of ovulation rate.


Journal of General Virology | 2002

PrPSc accumulation in placentas of ewes exposed to natural scrapie: influence of foetal PrP genotype and effect on ewe-to-lamb transmission

Olivier Andreoletti; Caroline Lacroux; Armelle Chabert; Laurent Monnereau; Guillaume Tabouret; Frédéric Lantier; Patricia Berthon; Francis Eychenne; Sylvie Lafond-Benestad; Jean-Michel Elsen; François Schelcher

Placentas from scrapie-affected ewes are known to be infectious. Nevertheless, placenta infectivity in such ewes is not systematic. Maternal transmission to lambs is highly suspected but contamination of the foetus in utero has not been demonstrated. Using ewes from a naturally scrapie-infected flock, it was demonstrated that abnormal prion protein (PrP(Sc)) accumulation in the placenta (i) is controlled by polymorphisms at codons 136, 154 and 171 of the foetal PrP gene and (ii) is restricted mainly to placentome foetal trophoblastic cells. In order to go deeper into the role of the placenta in scrapie transmission, the pattern of PrP(Sc) dissemination was established in susceptible lambs (genotype VRQ/VRQ) sampled from 140 days post-insemination to the age of 4 months from either VRQ/VRQ ewes with PrP(Sc)-positive placentas or ARR/VRQ ewes with PrP(Sc)-negative placentas. In both VRQ/VRQ lamb groups, PrP(Sc) spatial and temporal accumulation patterns were similar, suggesting post-natal rather than in utero contamination.


Genetics Selection Evolution | 2001

Simulation analysis to test the influence of model adequacy and data structure on the estimation of genetic parameters for traits with direct and maternal effects

Virginie Clément; Bernard Bibé; E. Verrier; Jean-Michel Elsen; Eduardo Manfredi; Jacques Bouix; Eric Hanocq

Simulations were used to study the influence of model adequacy and data structure on the estimation of genetic parameters for traits governed by direct and maternal effects. To test model adequacy, several data sets were simulated according to different underlying genetic assumptions and analysed by comparing the correct and incorrect models. Results showed that omission of one of the random effects leads to an incorrect decomposition of the other components. If maternal genetic effects exist but are neglected, direct heritability is overestimated, and sometimes more than double. The bias depends on the value of the genetic correlation between direct and maternal effects. To study the influence of data structure on the estimation of genetic parameters, several populations were simulated, with different degrees of known paternity and different levels of genetic connectedness between flocks. Results showed that the lack of connectedness affects estimates when flocks have different genetic means because no distinction can be made between genetic and environmental differences between flocks. In this case, direct and maternal heritabilities are under-estimated, whereas maternal environmental effects are overestimated. The insufficiency of pedigree leads to biased estimates of genetic parameters.


Genetics Selection Evolution | 2000

Comparison between the three porcine RN genotypes for growth, carcass composition and meat quality traits

Pascale Le Roy; Jean-Michel Elsen; J. C. Caritez; A. Talmant; H. Juin; P. Sellier; G. Monin

A three-step experimental design has been carried out to add evidence about the existence of the RN gene, with two segregating alleles RN- and rn+, having major effects on meat quality in pigs, to estimate its effects on production traits and to map the RN locus. In the present article, the experimental population and sampling procedures are described and discussed, and effects of the three RN genotypes on growth and carcass traits are presented. The RN genotype had no major effect on growth performance and killing out percentage. Variables pertaining to carcass tissue composition showed that the RN- allele is associated with leaner carcasses (about 1 s.d. effect without dominance for back fat thickness, 0.5 s.d. effect with dominance for weights of joints). Muscle glycolytic potential (GP) was considerably higher in RN- carriers, with a maximum of a 6.85 s.d. effect for the live longissimus muscle GP. Physico-chemical characteristics of meat were also influenced by the RN genotype in a dominant way, ultimate pH differing by about 2 s.d. between homozygous genotypes and meat colour by about 1 s.d. Technological quality was also affected, with a 1 s.d. decrease in technological yield for RN- carriers. The RN genotype had a more limited effect on eating quality. On the whole, the identity between the acid meat condition and the RN- allele effect is clearly demonstrated (higher muscle GP, lower ultimate pH, paler meat and lower protein content), and the unfavourable relationship between GP and carcass lean to fat ratio is confirmed.


Journal of Histochemistry and Cytochemistry | 2002

Phenotyping of protein-prion (PrPsc)-accumulating cells in lymphoid and neural tissues of naturally scrapie-affected sheep by double-labeling immunohistochemistry

Olivier Andreoletti; Patricia Berthon; Etienne Levavasseur; Daniel Marc; Frédéric Lantier; Eoin Monks; Jean-Michel Elsen; François Schelcher

Transmissible spongiform encephalopathies are fatal neurodegenerative diseases characterized by amyloid deposition of protein-prion (PrPsc), the pathogenic isoform of the host cellular protein PrPc, in the immune and central nervous systems. In the absence of definitive data on the nature of the infectious agent, PrPsc immunohistochemistry (IHC) constitutes one of the main methodologies for pathogenesis studies of these diseases. In situ PrPsc immunolabeling requires formalin fixation and paraffin embedding of tissues, followed by post-embedding antigen retrieval steps such as formic acid and hydrated autoclaving treatments. These procedures result in poor cellular antigen preservation, precluding the phenotyping of cells involved in scrapie pathogenesis. Until now, PrPsc-positive cell phenotyping relied mainly on morphological criteria. To identify these cells under the PrPsc IHC conditions, a new, rapid, and highly sensitive PrPsc double-labeling technique was developed, using a panel of screened antibodies that allow specific labeling of most of the cell subsets and structures using paraffin-embedded lymphoid and neural tissues from sheep, leading to an accurate identification of ovine PrPsc-accumulating cells. This technique constitutes a useful tool for IHC investigation of scrapie pathogenesis and may be applicable to the study of other ovine infectious diseases.


Genetics Selection Evolution | 2001

Genetic components of litter size variability in sheep

Magali SanCristobal-Gaudy; Loys Bodin; Jean-Michel Elsen; Claude Chevalet

Classical selection for increasing prolificacy in sheep leads to a concomitant increase in its variability, even though the objective of the breeder is to maximise the frequency of an intermediate litter size rather than the frequency of high litter sizes. For instance, in the Lacaune sheep breed raised in semi-intensive conditions, ewes lambing twins represent the economic optimum. Data for this breed, obtained from the national recording scheme, were analysed. Variance components were estimated in an infinitesimal model involving genes controlling the mean level as well as its environmental variability. Large heritability was found for the mean prolificacy, but a high potential for increasing the percentage of twins at lambing while reducing the environmental variability of prolificacy is also suspected. Quantification of the response to such a canalising selection was achieved.


Trends in Microbiology | 2001

A centuries-long epidemic of scrapie in British sheep?

Mark E. J. Woolhouse; Pietro Coen; Louise Matthews; James Foster; Jean-Michel Elsen; Ronald M. Lewis; Daniel T. Haydon; Nora Hunter

The apparent persistence of scrapie in British sheep for more than 250 years is difficult to explain. Susceptibility to scrapie is associated with particular alleles at a single locus, the PrP gene. As the only known effect of these alleles is to confer susceptibility to a fatal disease, natural selection is expected to reduce their frequency, as has been observed in practice during scrapie outbreaks in single sheep flocks. Susceptibility alleles, and hence scrapie itself, are therefore expected to become rare, yet the disease remains widespread. We suggest that the paradox of scrapies persistence can be explained by the exceptionally long time-scales inherent in the epidemiology of the disease. It is proposed that scrapie should be regarded as epidemic in British sheep but, unlike more familiar epidemics, which have time-scales of months or years, the scrapie epidemic has a time-scale of centuries. This interpretation implies that scrapie should eventually disappear from the sheep population.

Collaboration


Dive into the Jean-Michel Elsen's collaboration.

Top Co-Authors

Avatar

Carole Moreno

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Loys Bodin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Pascale Le Roy

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Frédéric Lantier

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

A. Legarra

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Isabelle Lantier

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Jacques Bouix

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Olivier Filangi

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Philippe Mulsant

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Dominique François

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge