Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jean-Michel Guigner is active.

Publication


Featured researches published by Jean-Michel Guigner.


Applied and Environmental Microbiology | 2012

Isolation and Characterization of Environmental Bacteria Capable of Extracellular Biosorption of Mercury

Fabienne François; Carine Lombard; Jean-Michel Guigner; Paul Soreau; Florence Brian-Jaisson; Grégory Martino; Manon Vandervennet; Daniel Garcia; Anne-Laure Molinier; David Pignol; Jean Peduzzi; Séverine Zirah; Sylvie Rebuffat

ABSTRACT Accumulation of toxic metals in the environment represents a public health and wildlife concern. Bacteria resistant to toxic metals constitute an attractive biomass for the development of systems to decontaminate soils, sediments, or waters. In particular, biosorption of metals within the bacterial cell wall or secreted extracellular polymeric substances (EPS) is an emerging process for the bioremediation of contaminated water. Here the isolation of bacteria from soil, effluents, and river sediments contaminated with toxic metals permitted the selection of seven bacterial isolates tolerant to mercury and associated with a mucoid phenotype indicative of the production of EPS. Inductively coupled plasma-optical emission spectroscopy and transmission electron microscopy in conjunction with X-ray energy dispersive spectrometry revealed that bacteria incubated in the presence of HgCl2 sequestered mercury extracellularly as spherical or amorphous deposits. Killed bacterial biomass incubated in the presence of HgCl2 also generated spherical extracellular mercury deposits, with a sequestration capacity (40 to 120 mg mercury per g [dry weight] of biomass) superior to that of live bacteria (1 to 2 mg mercury per g [dry weight] of biomass). The seven strains were shown to produce EPS, which were characterized by Fourier transform-infrared (FT-IR) spectroscopy and chemical analysis of neutral-carbohydrate, uronic acid, and protein contents. The results highlight the high potential of Hg-tolerant bacteria for applications in the bioremediation of mercury through biosorption onto the biomass surface or secreted EPS.


American Mineralogist | 2009

Mechanism of wollastonite carbonation deduced from micro- to nanometer length scale observations

Damien Daval; Isabelle Martinez; Jean-Michel Guigner; Roland Hellmann; Jérôme Corvisier; Nathaniel Findling; Christian Dominici; Bruno Goffé; François Guyot

Abstract The microstructural evolution of CaSiO3 wollastonite subjected to carbonation reactions at T = 90 °C and pCO2 = 25 MPa was studied at three different starting conditions: (1) pure water; (2) aqueous alkaline solution (0.44 M NaOH); and (3) supercritical CO2. Scanning and transmission electron microscopy on reacted grains prepared in cross-section always revealed unaltered wollastonite cores surrounded by micrometer-thick pseudomorphic silica rims that were amorphous, highly porous, and fractured. The fractures were occasionally filled with nanometer-sized crystals of calcite and Ca-phyllosilicates. Nanoscale chemical profiles measured across the wollastonite-silica interfacial region always revealed sharp, step-like decreases in Ca concentration. Comparison of the Ca profiles with diffusion modeling suggests that the silica rims were not formed by preferential cation leaching (leached layer), but rather by interfacial dissolution-precipitation. Extents of carbonation as a function of time were determined by quantitative Rietveld refinement of X-ray diffractograms performed on the reacted powders. Comparing the measured extents of carbonation in water (condition 1) with kinetic modeling suggests that carbonation was rate-controlled by chemical reactions at the wollastonite interface, and not by transport limitations within the silica layers. However, at conditions 2 and 3, calcite crystals occurred as a uniform surface coating covering the silica layers, and also within pores and cracks, thereby blocking the connectivity of the originally open nanoscale porosity. These crystals ultimately may have been responsible for controlling transport of solutes through the silica layers. Therefore, this study suggests that pure silica layers were intrinsically non-passivating, whereas silica layers became partially passivating due to the presence of calcite crystallites


Macromolecular Rapid Communications | 2013

Facile Synthesis of Multicompartment Micelles Based on Biocompatible Poly(3-hydroxyalkanoate)

Julien Babinot; Estelle Renard; Benjamin Le Droumaguet; Jean-Michel Guigner; Simona Mura; Julien Nicolas; Patrick Couvreur; Valérie Langlois

In this paper, a straightforward method to produce poly(3-hydroxyalkanoate)-based multicompartment micelles (MCMs) is presented. Thiol-ene addition is used to graft sequentially perfluorooctyl chains and poly(ethylene glycol) oligomers onto poly(3-hydroxyoctanoate-co-hydroxyundecenoate) oligomers backbone. Well-defined copolymers are obtained as shown by ¹H NMR and size-exclusion chromatography. After nanoprecipitation in water, novel PHA-based MCMs are evidenced by cryo-transmission electron microscopy. Moreover, the cytocompatibility of MCMs is demonstrated in vitro via cell viability assay.


Biochimie | 2011

Nanoscale topography of hepatitis B antigen particles by atomic force microscopy

Pierre-Emmanuel Milhiet; Patrice Dosset; Cédric Godefroy; Christian Le Grimellec; Jean-Michel Guigner; Eric Larquet; Frédéric Ronzon; Catherine Manin

Hepatitis B virus envelope is mainly composed of three forms of the same protein expressed from different start codons of the same open reading frame. The smaller form named S protein corresponds to the C-terminal common region and represents about 80% of the envelope proteins. It is mainly referred as hepatitis B virus surface antigen (HBsAg). Over expressed in the host cell, this protein can be produced as spherical and tubular self-organized particles. Highly immunogenic, these particles are used in licensed hepatitis B vaccines. In this study we have combined transmission electron microscopy and atomic force microscopy to determine the shape and size of HBsAg particles produced from the yeast Hansenula polymorpha. Tapping mode atomic force microscopy in liquid allows structural details of the surface to be delineated with a resolution in the nanometer range. Particles were decorated by closely packed spike-like structures protruding from particle surface. Protrusions appeared uniformly distributed at the surface and an average number of 75 protrusions per particle were calculated. Importantly, we demonstrated that proteins mainly contribute to the topography of the protrusions.


Journal of Hazardous Materials | 2017

Complete removal of arsenic and zinc from a heavily contaminated acid mine drainage via an indigenous SRB consortium

Pierre Le Pape; Fabienne Battaglia-Brunet; Marc Parmentier; Catherine Joulian; Cindy Gassaud; Lidia Fernandez-Rojo; Jean-Michel Guigner; Maya Ikogou; Lucie Stetten; Luca Olivi; Corinne Casiot; Guillaume Morin

Acid mine drainages (AMD) are major sources of pollution to the environment. Passive bio-remediation technologies involving sulfate-reducing bacteria (SRB) are promising for treating arsenic contaminated waters. However, mechanisms of biogenic As-sulfide formation need to be better understood to decontaminate AMDs in acidic conditions. Here, we show that a high-As AMD effluent can be decontaminated by an indigenous SRB consortium. AMD water from the Carnoulès mine (Gard, France) was incubated with the consortium under anoxic conditions and As, Zn and Fe concentrations, pH and microbial activity were monitored during 94days. Precipitated solids were analyzed using electron microscopy (SEM/TEM-EDXS), and Extended X-Ray Absorption Fine Structure (EXAFS) spectroscopy at the As K-edge. Total removal of arsenic and zinc from solution (1.06 and 0.23mmol/L, respectively) was observed in two of the triplicates. While Zn precipitated as ZnS nanoparticles, As precipitated as amorphous orpiment (am-AsIII2S3) (33-73%), and realgar (AsIIS) (0-34%), the latter phase exhibiting a particular nanowire morphology. A minor fraction of As is also found as thiol-bound AsIII (14-23%). We propose that the formation of the AsIIS nanowires results from AsIII2S3 reduction by biogenic H2S, enhancing the efficiency of As removal. The present description of As immobilization may help to set the basis for bioremediation strategies using SRB.


Chemistry: A European Journal | 2015

Amphiphilic Polyoxometalates for the Controlled Synthesis of Hybrid Polystyrene Particles with Surface Reactivity

Jennifer Lesage de la Haye; Jean-Michel Guigner; Eric Marceau; Laurent Ruhlmann; Bernold Hasenknopf; Emmanuel Lacôte; Jutta Rieger

Amphiphilic organo-polyoxometalates (POMs) used in the radical emulsion polymerization of styrene allowed the preparation in aqueous medium of stable 50-100 nm polystyrene-POM composite latexes. Thanks to the presence of a trithiocarbonate group in the POM amphiphile, POMs could be covalently linked to the polymer particle surface. The chemical and catalytic integrity of the POMs was confirmed, and the POM-mediated surface photoactivity of the latexes was demonstrated by the spatially controlled nucleation of silver nanoparticles at the periphery of the composites.


Polymer Chemistry | 2015

Synthesis, binding and self-assembly properties of a well-defined pillar[5]arene end functionalised polydimethylacrylamide

Nérimel Laggoune; François Delattre; Joël Lyskawa; François Stoffelbach; Jean-Michel Guigner; Steven Ruellan; Graeme Cooke; Patrice Woisel

The synthesis, binding and self-assembly properties of a well-defined pillar[5]arene end-functionalised poly(dimethylacrylamide)(MePilla-PDMAC) are reported. In order to synthesise MePilla-PDMAC, a new trithiocarbonate type RAFT agent MePilla-CTA was developed incorporting a partially methylated pillar[5]arene moiety. Kinetic studies clearly indicated the propensity of MePilla-CTA to control the polymerisation of DMAC. Interestingly, as PDMAC type chains display good solubilty both in organic and aqueous media, MePilla-PDMAC was able of specifically bind electron deficient guest molecules at the α-chain-end both in chloroform and water. Complex formation was found to be reversible upon addition of chloride anions or heating in organic and aqueous media, respectively. Furthermore, cryo-TEM, VT-NMR (1H) and VT-DLS investigations also indicated the ability of MePilla-PDMAC to self-assemble into micelle-like aggregates in water showing reversible recognition properties.


Scientific Reports | 2016

Preservation of Archaeal Surface Layer Structure During Mineralization

Adrienne Kish; Jennyfer Miot; Carine Lombard; Jean-Michel Guigner; Sylvain Bernard; Séverine Zirah; François Guyot

Proteinaceous surface layers (S-layers) are highly ordered, crystalline structures commonly found in prokaryotic cell envelopes that augment their structural stability and modify interactions with metals in the environment. While mineral formation associated with S-layers has previously been noted, the mechanisms were unconstrained. Using Sulfolobus acidocaldarius a hyperthermophilic archaeon native to metal-enriched environments and possessing a cell envelope composed only of a S-layer and a lipid cell membrane, we describe a passive process of iron phosphate nucleation and growth within the S-layer of cells and cell-free S-layer “ghosts” during incubation in a Fe-rich medium, independently of metabolic activity. This process followed five steps: (1) initial formation of mineral patches associated with S-layer; (2) patch expansion; (3) patch connection; (4) formation of a continuous mineral encrusted layer at the cell surface; (5) early stages of S-layer fossilization via growth of the extracellular mineralized layer and the mineralization of cytosolic face of the cell membrane. At more advanced stages of encrustation, encrusted outer membrane vesicles are formed, likely in an attempt to remove damaged S-layer proteins. The S-layer structure remains strikingly well preserved even upon the final step of encrustation, offering potential biosignatures to be looked for in the fossil record.


Biophysical Journal | 2013

Growth of Large and Highly Ordered 2D Crystals of a K+ Channel, Structural Role of Lipidic Environment

Rita De Zorzi; William V. Nicholson; Jean-Michel Guigner; Françoise Erne-Brand; Catherine Vénien-Bryan

2D crystallography has proven to be an excellent technique to determine the 3D structure of membrane proteins. Compared to 3D crystallography, it has the advantage of visualizing the protein in an environment closer to the native one. However, producing good 2D crystals is still a challenge and little statistical knowledge can be gained from literature. Here, we present a thorough screening of 2D crystallization conditions for a prokaryotic inwardly rectifying potassium channel (>130 different conditions). Key parameters leading to very large and well-organized 2D crystals are discussed. In addition, the problem of formation of multilayers during the growth of 2D crystals is also addressed. An intermediate resolution projection map of KirBac3.1 at 6 Å is presented, which sheds (to our knowledge) new light on the structure of this channel in a lipid environment.


Molecular Immunology | 2015

Mapping of the epitopes of poliovirus type 2 in complex with antibodies.

Ludovic Bannwarth; Yves Girerd-Chambaz; Ana A. Arteni; Jean-Michel Guigner; Frédéric Ronzon; Catherine Manin; Catherine Vénien-Bryan

The inactivated polio vaccine (IPV) contains poliovirus (PV) samples that belong to serotypes 1, 2 and 3. All three serotypes contain the D-antigen, which induces protective antibodies. The antigenic structure of PVs consists of at least four different antigenic sites and the D-antigen content represents the combined activity of multiple epitopes (Ferguson et al., 1993; Minor, 1990; Minor et al., 1986). The potency of IPV vaccines is determined by measuring the D-antigen content. Several ELISA methods have been developed using polyclonal or monoclonal antibodies (Mabs) in order to quantify the D-antigen content. Characterization of the epitopes recognized by the different Mabs is crucial to map the entire virus surface and ensure the presence of epitopes able to induce neutralizing antibodies. Using a new approach that we developed to study the interaction between monoclonal antibodies and poliovirus type 2, which combines cryo-electron microscopy, image analysis and X-ray crystallography along with identification of exposed amino acids, we have mapped in 3D the epitope sites recognized by three specific Fabs at the surface of poliovirus type 2 (PV2) and characterized precisely the antigenic sites for these Fabs.

Collaboration


Dive into the Jean-Michel Guigner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Céline Férard

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Fériel Skouri-Panet

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge