Jean-Nicolas Tournier
École Normale Supérieure
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jean-Nicolas Tournier.
Journal of Immunology | 2005
Jean-Nicolas Tournier; Anne Quesnel-Hellmann; Jacques Mathieu; Cesare Montecucco; Wei-Jen Tang; Michèle Mock; Dominique R. Vidal; Pierre L. Goossens
Bacillus anthracis secretes two critical virulence factors, lethal toxin (LT) and edema toxin (ET). In this study, we show that murine bone marrow-derived dendritic cells (DC) infected with B. anthracis strains secreting ET exhibit a very different cytokine secretion pattern than DC infected with B. anthracis strains secreting LT, both toxins, or a nontoxinogenic strain. ET produced during infection selectively inhibits the production of IL-12p70 and TNF-α, whereas LT targets IL-10 and TNF-α production. To confirm the direct role of the toxins, we show that purified ET and LT similarly disrupt cytokine secretion by DC infected with a nontoxinogenic strain. These effects can be reversed by specific inhibitors of each toxin. Furthermore, ET inhibits in vivo IL-12p70 and IFN-γ secretion induced by LPS. These results suggest that ET produced during infection impairs DC functions and cooperates with LT to suppress the innate immune response. This may represent a new strategy developed by B. anthracis to escape the host immune response.
Journal of Immunology | 2007
Aurélie Cleret; Anne Quesnel-Hellmann; Alexandra Vallon-Eberhard; Bernard Verrier; Steffen Jung; Dominique R. Vidal; Jacques Mathieu; Jean-Nicolas Tournier
Inhalational anthrax is a life-threatening infectious disease of considerable concern, especially because anthrax is an emerging bioterrorism agent. The exact mechanisms leading to a severe clinical form through the inhalational route are still unclear, particularly how immobile spores are captured in the alveoli and transported to the lymph nodes in the early steps of infection. We investigated the roles of alveolar macrophages and lung dendritic cells (LDC) in spore migration. We demonstrate that alveolar macrophages are the first cells to phagocytose alveolar spores, and do so within 10 min. However, interstitial LDCs capture spores present in the alveoli within 30 min without crossing the epithelial barrier suggesting a specific mechanism for rapid alveolus sampling by transepithelial extension. We show that interstitial LDCs constitute the cell population that transports spores into the thoracic lymph nodes from within 30 min to 72 h after intranasal infection. Our results demonstrate that LDCs are central to spore transport immediately after infection. The rapid kinetics of pathogen transport may contribute to the clinical features of inhalational anthrax.
Molecular Aspects of Medicine | 2009
Jean-Nicolas Tournier; Silvia Rossi Paccani; Anne Quesnel-Hellmann; Cosima T. Baldari
Successful colonization of the host by bacterial pathogens relies on their capacity to evade the complex and powerful defenses opposed by the host immune system, at least in the initial phases of infection. The two toxins of Bacillus anthracis, lethal toxin and edema toxin, appear to have been shaped by evolution to assist the microorganism in this crucial function, in addition to act as general toxins acting on almost all cell types. Edema toxin causes a consistent elevation of cAMP, an important second messenger the production of which is normally strictly controlled in mammalian cells, whereas lethal toxin cleaves most isoforms of mitogen-activated protein kinase kinases. By disrupting or subverting central modules common to all the principal signaling networks which control immune cell activation, effector function and migration, the anthrax toxins effectively and systematically dismantle both the innate and the adaptive immune defenses of the host. Here, we review the specific effects of the lethal and edema toxins of B. anthracis on the activation and function of phagocytes, dendritic cells and lymphocytes. We also discuss some open issues which should be addressed to gain a comprehensive insight into the complex relationship that B. anthracis establishes with the host.
Cellular Microbiology | 2007
Jean-Nicolas Tournier; Anne Quesnel-Hellmann; Aurélie Cleret; Dominique R. Vidal
Inhalational anthrax is a life‐threatening infectious disease of considerable concern, especially as a potential bioterrorism agent. Progress is gradually being made towards understanding the mechanisms used by Bacillus anthracis to escape the immune system and to induce severe septicaemia associated with toxaemia and leading to death. Recent advances in fundamental research have revealed previously unsuspected roles for toxins in various cell types. We summarize here pathological data for animal models and macroscopic histological examination data from recent clinical records, which we link to the effects of toxins. We describe three major steps in infection: (i) an invasion phase in the lung, during which toxins have short‐distance effects on lung phagocytes; (ii) a phase of bacillus proliferation in the mediastinal lymph nodes, with local effects of toxins; and (iii) a terminal, diffusion phase, characterized by a high blood bacterial load and by long‐distance effects of toxins, leading to host death. The pathophysiology of inhalational anthrax thus involves interactions between toxins and various cell partners, throughout the course of infection.
The Journal of Infectious Diseases | 2006
Aurélie Cleret; Anne Quesnel-Hellmann; Jacques Mathieu; Dominique R. Vidal; Jean-Nicolas Tournier
Bacillus anthracis secretes 2 toxins: lethal toxin (LT) and edema toxin (ET). We investigated their role in the physiopathologic mechanisms of inhalational anthrax by evaluating murine lung dendritic cell (LDC) functions after infection with B. anthracis strains secreting LT, ET, or both or with a nontoxinogenic strain. Three lung cell populations gated on CD11c/CD11b expression were obtained after lung digestion: (1) CD11c(high)/CD11b(low) (alveolar macrophages), (2) CD11c(intermediate (int))/CD11b(int) (LDCs), and (3) CD11c(low)/CD11b(high) (interstitial macrophages or monocytes). After infection with LT-secreting strains, a decrease in costimulatory molecule expression on LDCs was observed. All CD11c+ cells infected with a nontoxinogenic strain secreted tumor necrosis factor (TNF)- alpha , interleukin (IL)-10, and IL-6. LT-secreting strains inhibited overall cytokine secretion, whereas the ET-secreting strain inhibited only TNF- alpha secretion and increased IL-6 secretion. Similar results were obtained after preincubation with purified toxins. Our results suggest that anthrax toxins secreted during infection impair LDC function and suppress the innate immune response.
Expert Review of Anti-infective Therapy | 2009
Jean-Nicolas Tournier; Robert G. Ulrich; Anne Quesnel-Hellmann; Mansour Mohamadzadeh; Bradley G. Stiles
Bacillus anthracis is the causative agent of anthrax, a disease that plagues both humans and various animal species. Effective vaccines are available, but those approved for human use are crude culture supernatants that require multiple injections and a yearly boost. Many experts agree that it is now time for the next generation of human vaccines against anthrax. Accordingly, this review will succinctly focus upon: pathogenesis of B. anthracis, with particular emphasis upon the immune system; the pertinent biophysical nature of protective antigen, which includes how the protein toxin component affords protection as a vaccine target; alternative methods for improving protective antigen as an immunogen; and additional B. anthracis antigens that might further sustain protective titers in humans. In addition to a better understanding of the disease process elicited by B. anthracis, which will logically lead to better vaccines (and therapeutics), there also needs to be the same level of open-mindedness applied to the politics of anthrax.
Vaccine | 2008
Audrey Ferrier-Rembert; Robert Drillien; Jean-Nicolas Tournier; Daniel Garin; Jean-Marc Crance
This study assessed three non-replicating smallpox vaccine candidates (modified vaccinia Ankara (MVA), NYVAC and HR) for their immunogenicity and ability to protect mice against an intranasal cowpox virus challenge and compared them with the traditional replicating vaccine. A single immunisation with the non-replicating vaccines induced a complete protection from death at short-term, but was not fully protective when mice were challenged 150 days post-vaccination with protection correlated with the specific neutralizing antibodies and CD4(+) T-cells responses. Prime-boost vaccination enabled effective long-term protection from death for mice vaccinated with MVA, but protection from disease and CD4(+) T-cell level were lower than the ones induced by the traditional vaccine over the long-term period. Further investigations are necessary with MVA to determine the optimal conditions of immunisation to induce at long-term immunogenicity and protection observed with the 1st generation smallpox vaccine.
Infection and Immunity | 2009
Yves P. Gauthier; Jean-Nicolas Tournier; Jean-Charles Paucod; Jean-Philippe Corre; Michèle Mock; Pierre L. Goossens; Dominique R. Vidal
ABSTRACT Protective antigen (PA)-based anthrax vaccines acting on toxins are less effective than live attenuated vaccines, suggesting that additional antigens may contribute to protective immunity. Several reports indicate that capsule or spore-associated antigens may enhance the protection afforded by PA. Addition of formaldehyde-inactivated spores (FIS) to PA (PA-FIS) elicits total protection against cutaneous anthrax. Nevertheless, vaccines that are effective against cutaneous anthrax may not be so against inhalational anthrax. The aim of this work was to optimize immunization with PA-FIS and to assess vaccine efficacy against inhalational anthrax. We assessed the immune response to recombinant anthrax PA from Bacillus anthracis (rPA)-FIS administered by various immunization protocols and the protection provided to mice and guinea pigs infected through the respiratory route with spores of a virulent strain of B. anthracis. Combined subcutaneous plus intranasal immunization of mice yielded a mucosal immunoglobulin G response to rPA that was more than 20 times higher than that in lung mucosal secretions after subcutaneous vaccination. The titers of toxin-neutralizing antibody and antispore antibody were also significantly higher: nine and eight times higher, respectively. The optimized immunization elicited total protection of mice intranasally infected with the virulent B. anthracis strain 17JB. Guinea pigs were fully protected, both against an intranasal challenge with 100 50% lethal doses (LD50) and against an aerosol with 75 LD50 of spores of the highly virulent strain 9602. Conversely, immunization with PA alone did not elicit protection. These results demonstrate that the association of PA and spores is very much more effective than PA alone against experimental inhalational anthrax.
Journal of Leukocyte Biology | 2003
Jean-Nicolas Tournier; Anne Quesnel Hellmann; Gaëtan Lesca; Alain Jouan; Emmanuel Drouet; Jacques Mathieu
Fever is one of the most frequent clinical signs encountered in pathology, especially with respect to infectious diseases. It is currently thought that the role of fever on immunity is limited to activation of innate immunity; however, its relevance to activation of adaptive immunity remains unclear. Dendritic cells (DCs) that behave as sentinels of the immune system provide an important bridge between innate and adaptive immunity. To highlight the role of fever on adaptive immunity, we exposed murine bone marrow‐derived lipopolysaccharide (LPS)‐ or live bacteria‐maturing DCs over a 3‐h period to 37°C or to fever‐like thermal conditions (39°C or 40°C). At these three temperatures, we measured the kinetics of cytokine production and the ability of DCs to induce an allogeneic mixed lymphocyte reaction. Our results show that short exposure of DCs to temperatures of 39°C or 40°C differentially increased the secretion of interleukin (IL)‐12p70 and decreased the secretion of IL‐10 and tumor necrosis factor α by maturing DCs. These fever‐like conditions induced a regulation of cytokine production at the single‐cell level. In addition, short‐term exposed LPS‐maturing DCs to 39°C induced a stronger reaction with allogeneic CD4+ T cells than maturing DCs incubated at 37°C. These results provide evidence that temperature regulates cytokine secretion and DC functions, both of which are of particular importance in bacterial diseases.
PLOS Pathogens | 2012
Maria Klezovich-Bénard; Jean-Philippe Corre; Hélène Jusforgues-Saklani; Daniel Fiole; Nick Burjek; Jean-Nicolas Tournier; Pierre L. Goossens
NK cells are important immune effectors for preventing microbial invasion and dissemination, through natural cytotoxicity and cytokine secretion. Bacillus anthracis spores can efficiently drive IFN-γ production by NK cells. The present study provides insights into the mechanisms of cytokine and cellular signaling that underlie the process of NK-cell activation by B. anthracis and the bacterial strategies to subvert and evade this response. Infection with non-toxigenic encapsulated B. anthracis induced recruitment of NK cells and macrophages into the mouse draining lymph node. Production of edema (ET) or lethal (LT) toxin during infection impaired this cellular recruitment. NK cell depletion led to accelerated systemic bacterial dissemination. IFN-γ production by NK cells in response to B. anthracis spores was: i) contact-dependent through RAE-1-NKG2D interaction with macrophages; ii) IL-12, IL-18, and IL-15-dependent, where IL-12 played a key role and regulated both NK cell and macrophage activation; and iii) required IL-18 for only an initial short time window. B. anthracis toxins subverted both NK cell essential functions. ET and LT disrupted IFN-γ production through different mechanisms. LT acted both on macrophages and NK cells, whereas ET mainly affected macrophages and did not alter NK cell capacity of IFN-γ secretion. In contrast, ET and LT inhibited the natural cytotoxicity function of NK cells, both in vitro and in vivo. The subverting action of ET thus led to dissociation in NK cell function and blocked natural cytotoxicity without affecting IFN-γ secretion. The high efficiency of this process stresses the impact that this toxin may exert in anthrax pathogenesis, and highlights a potential usefulness for controlling excessive cytotoxic responses in immunopathological diseases. Our findings therefore exemplify the delicate balance between bacterial stimulation and evasion strategies. This highlights the potential implication of the crosstalk between host innate defences and B. anthracis in initial anthrax control mechanisms.