Jean-Olivier Durand
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jean-Olivier Durand.
Chemical Communications | 2009
David Brevet; Magali Gary-Bobo; Laurence Raehm; Sébastien Richeter; Ouahiba Hocine; Kassem Amro; Bernard Loock; Pierre Couleaud; Céline Frochot; Alain Morère; Philippe Maillard; Marcel Garcia; Jean-Olivier Durand
Functionalisation of MSN with mannose for PDT applications dramatically improved the efficiency of PDT on breast cancer cells.
Nanoscale | 2010
Pierre Couleaud; Vincent Morosini; Céline Frochot; Sébastien Richeter; Laurence Raehm; Jean-Olivier Durand
Silica-based nanoparticles for applications in photodynamic therapy (PDT) have emerged as a promising field for the treatment of cancer. In this review, based on the pathway the photosensitizer is entrapped inside the silica matrix, the different methods for the synthesis of silica-based nanoparticles are described from the pioneering works to the latest achievements which concern multifunctional nanoplatforms, up-converting nanoparticles, two-photon PDT, vectorization and in vivo applications.
Angewandte Chemie | 2011
Magali Gary-Bobo; Youssef Mir; Cédric Rouxel; David Brevet; Ilaria Basile; Marie Maynadier; Ophélie Vaillant; Olivier Mongin; Mireille Blanchard-Desce; Alain Morère; Marcel Garcia; Jean-Olivier Durand; Laurence Raehm
In the context of national systematic screenings for cancer,photodynamic therapy (PDT) has arisen as an alternative tochemo- and radiotherapy for the non-invasive selectivedestruction of small tumors. PDT involves the use of aphotosensitizer which, upon irradiation at specific wave-lengths, in the presence of oxygen, leads to the generation ofcytotoxic species and consequently to irreversible celldamage.
Advanced Materials | 2014
Jonas G. Croissant; Xavier Cattoën; Michel Wong Chi Man; Audrey Gallud; Laurence Raehm; Philippe Trens; Marie Maynadier; Jean-Olivier Durand
Periodic mesoporous organosilica nanorods and nanospheres are synthesized from 1,4-bis(triethoxysilyl)ethylene and bis(3-ethoxysilylpropyl)disulfide. The nanosystems present the long-range order of the hexagonal nanostructure. They are degraded in simulated physiological conditions. The loading and release of doxorubicin with these nanosystems are both pH dependent. These nanoparticles are endocytosed by breast cancer cells and are very efficient for doxorubicin delivery in these cells.
International Journal of Pharmaceutics | 2012
Magali Gary-Bobo; Ouahiba Hocine; David Brevet; Marie Maynadier; Laurence Raehm; Sébastien Richeter; Virginie Charasson; Bernard Loock; Alain Morère; Philippe Maillard; Marcel Garcia; Jean-Olivier Durand
The synthesis of mesoporous silica nanoparticles (MSN) covalently encapsulating fluoresceine or a photosensitizer, functionalized with galactose on the surface is described. Confocal microscopy experiments demonstrated that the uptake of galactose-functionalized MSN by colorectal cancer cells was mediated by galactose receptors leading to the accumulation of the nanoparticles in the endosomal and lysosomal compartments. The MSN functionalized with a photosensitizer and galactose were loaded with the anti-cancer drug camptothecin. Those MSN combining drug delivery and photodynamic therapy were tested on three cancer cell lines and showed a dramatic enhancement of cancer cell death compared to separate treatments.
Advanced Healthcare Materials | 2013
Emilie Secret; Kevin S. Smith; Valentina Dubljevic; Eli Moore; Peter J. Macardle; Mary-Louise Rogers; Terrance G. Johns; Jean-Olivier Durand; Frédérique Cunin; Nicolas H. Voelcker
We describe the preparation of biodegradable porous silicon nanoparticles (pSiNP) functionalized with cancer cell targeting antibodies and loaded with the hydrophobic anti-cancer drug camptothecin. Orientated immobilization of the antibody on the pSiNP is achieved using novel semicarbazide based bioconjugate chemistry. To demonstrate the generality of this targeting approach, the three antibodies MLR2, mAb528 and Rituximab are used, which target neuroblastoma, glioblastoma and B lymphoma cells, respectively. Successful targeting is demonstrated by means of flow cytometry and immunocytochemistry both with cell lines and primary cells. Cell viability assays after incubation with pSiNPs show selective killing of cells expressing the receptor corresponding to the antibody attached on the pSiNP.
Small | 2014
Jonas G. Croissant; Arnaud Chaix; Olivier Mongin; Miao Wang; Sébastien Clément; Laurence Raehm; Jean-Olivier Durand; Vincent Hugues; Mireille Blanchard-Desce; Marie Maynadier; Audrey Gallud; Magali Gary-Bobo; Marcel Garcia; Jie Lu; Fuyuhiko Tamanoi; Daniel P. Ferris; Derrick Tarn; Jeffrey I. Zink
Mesoporous silica nanoparticles (MSN) are functionalized in the walls with an original fluorophore with a high two-photon absorption cross-section. The pores of the MSN filled with anticancer drug are blocked with a pseudo-rotaxane constituted by an azobenzene stalk and a β-cyclodextrin moiety. After incubation of the nanosystem with MCF-7 breast cancer cells, two-photon irradiation at low power is used to image the cells. At high power, cancer cell killing is observed due to the two-photon-triggered opening of the pores through FRET and the release of the anticancer drug from the MSN.
Advanced Materials | 2014
Emilie Secret; Marie Maynadier; Audrey Gallud; Arnaud Chaix; Elise Bouffard; Magali Gary-Bobo; Nathalie Marcotte; Olivier Mongin; Khaled El Cheikh; Vincent Hugues; Mélanie Auffan; Céline Frochot; Alain Morère; Philippe Maillard; Mireille Blanchard-Desce; Michael J. Sailor; Marcel Garcia; Jean-Olivier Durand; Frédérique Cunin
Porous silicon nanoparticles (pSiNPs) act as a sensitizer for the 2-photon excitation of a pendant porphyrin using NIR laser light, for imaging and photodynamic therapy. Mannose-functionalized pSiNPs can be vectorized to MCF-7 human breast cancer cells through a mannose receptor-mediated endocytosis mechanism to provide a 3-fold enhancement of the 2-photon PDT effect.
International Journal of Pharmaceutics | 2010
Ouahiba Hocine; Magali Gary-Bobo; David Brevet; Marie Maynadier; Simon Fontanel; Laurence Raehm; Sébastien Richeter; Bernard Loock; Pierre Couleaud; Céline Frochot; Clarence Charnay; Gaelle Derrien; Monique Smaïhi; Amar Sahmoune; Alain Morère; Philippe Maillard; Marcel Garcia; Jean-Olivier Durand
The synthesis of silicalites and Mesoporous Silica Nanoparticles (MSN), which covalently incorporate original water-soluble photosensitizers for PDT applications is described. PDT was performed on MDA-MB-231 breast cancer cells. All the nanoparticles showed significant cell death after irradiation, which was not correlated with (1)O(2) quantum yield of the nanoparticles. Other parameters are involved and in particular the surface and shape of the nanoparticles which influence the pathway of endocytosis. Functionalization with mannose was necessary to obtain the best results with PDT due to an active endocytosis of mannose-functionalized nanoparticles. The quantity of mannose on the surface should be carefully adjusted as a too high amount of mannose impairs the phototoxicity of the nanoparticles. Fluorescein was also encapsulated in MCM-41 type MSN in order to localize the nanoparticles in the organelles of the cells by confocal microscopy. The MSN were localized in lysosomes after active endocytosis by mannose receptors.
Angewandte Chemie | 2013
Jonas G. Croissant; Marie Maynadier; Audrey Gallud; Harmel W. Peindy N'dongo; Jeff L. Nyalosaso; Gaelle Derrien; Clarence Charnay; Jean-Olivier Durand; Laurence Raehm; Françoise Serein-Spirau; Nathalie Cheminet; Thibaut Jarrosson; Olivier Mongin; Mireille Blanchard-Desce; Magali Gary-Bobo; Marcel Garcia; Jie Lu; Fuyuhiko Tamanoi; Derrick Tarn; Tania M. Guardado-Alvarez; Jeffrey I. Zink
A therapy of cancer cells: Two-photon-triggered camptothecin delivery with nanoimpellers was studied in MCF-7 breast cancer cells. A fluorophore with a high two-photon absorption cross-section was first incorporated in the nanoimpellers. Fluorescence resonance energy transfer (FRET) from the fluorophore to the azobenzene moiety was demonstrated.