Jean-Pierre Dangy
Swiss Tropical and Public Health Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jean-Pierre Dangy.
The Journal of Infectious Diseases | 2005
Julia Leimkugel; Abudulai Adams Forgor; Sebastien Gagneux; Valentin Pflüger; Christian Flierl; Elizabeth Awine; Martin Naegeli; Jean-Pierre Dangy; Thomas J. Smith; Abraham Hodgson; Gerd Pluschke
BACKGROUND The Kassena-Nankana District (KND) of northern Ghana lies in the African meningitis belt, where epidemics of bacterial meningitis have been reoccurring every 8-12 years. These epidemics are generally caused by Neisseria meningitidis, an organism that is considered to be uniquely capable of causing meningitis epidemics. METHODS We recruited all patients with suspected meningitis in the KND between 1998 and 2003. Cerebrospinal fluid samples were collected and analyzed by standard microbiological techniques. Bacterial isolates were subjected to serotyping, multilocus sequence typing (MLST), and antibiotic-resistance testing. RESULTS A continual increase in the incidence of pneumococcal meningitis was observed from 2000 to 2003. This outbreak exhibited strong seasonality, a broad host age range, and clonal dominance, all of which are characteristic of meningococcal meningitis epidemics in the African meningitis belt. The case-fatality rate for pneumococcal meningitis was 44.4%; the majority of pneumococcal isolates were antibiotic sensitive and expressed the serotype 1 capsule. MLST revealed that these isolates belonged to a clonal complex dominated by sequence type (ST) 217 and its 2 single-locus variants, ST303 and ST612. CONCLUSIONS The S. pneumoniae ST217 clonal complex represents a hypervirulent lineage with a high propensity to cause meningitis, and our results suggest that this lineage might have the potential to cause an epidemic. Serotype 1 is not included in the currently licensed pediatric heptavalent pneumococcal vaccine. Mass vaccination with a less complex conjugate vaccine that targets hypervirulent serotypes should, therefore, be considered.
PLOS Medicine | 2007
Julia Leimkugel; Abraham Hodgson; Abudulai Adams Forgor; Valentin Pflüger; Jean-Pierre Dangy; Thomas B. Smith; Mark Achtman; Sebastien Gagneux; Gerd Pluschke
Background The Kassena-Nankana District of northern Ghana lies in the African “meningitis belt” where epidemics of meningococcal meningitis have been reoccurring every eight to 12 years for the last 100 years. The dynamics of meningococcal colonisation and disease are incompletely understood, and hence we embarked on a long-term study to determine how levels of colonisation with different bacterial serogroups change over time, and how the patterns of disease relate to such changes. Methods and Findings Between February 1998 and November 2005, pharyngeal carriage of Neisseria meningitidis in the Kassena-Nankana District was studied by twice-yearly colonisation surveys. Meningococcal disease was monitored throughout the eight-year study period, and patient isolates were compared to the colonisation isolates. The overall meningococcal colonisation rate of the study population was 6.0%. All culture-confirmed patient isolates and the majority of carriage isolates were associated with three sequential waves of colonisation with encapsulated (A ST5, X ST751, and A ST7) meningococci. Compared to industrialised countries, the colonising meningococcal population was less constant in genotype composition over time and was genetically less diverse during the peaks of the colonisation waves, and a smaller proportion of the isolates was nonserogroupable. We observed a broad age range in the healthy carriers, resembling that of meningitis patients during large disease epidemics. Conclusions The observed lack of a temporally stable and genetically diverse resident pharyngeal flora of meningococci might contribute to the susceptibility to meningococcal disease epidemics of residents in the African meningitis belt. Because capsular conjugate vaccines are known to impact meningococcal carriage, effects on herd immunity and potential serogroup replacement should be monitored following the introduction of such vaccines.
Tropical Medicine & International Health | 2005
Abudulai Adams Forgor; Julia Leimkugel; Abraham Hodgson; Akalifa Bugri; Jean-Pierre Dangy; Sebastien Gagneux; Thomas B. Smith; Gerd Pluschke
Neisseria meningitidis serogroup W135, well known for a long time as a cause of isolated cases of meningococcal meningitis, has recently increasingly been associated with disease outbreaks of considerable magnitude. Burkina Faso was hit by W135 epidemics in the dry seasons of 2002–2004, but only four W135 meningitis cases were recorded between February 2003 and March 2004 in adjoining Ghana. This reconfirms previous findings that bottlenecks exist in the spreading of new epidemic N. meningitidis clones within the meningitis belt of sub‐Saharan Africa. Of the four Ghanaian W135 meningitis patients one died and three survived, of whom one had profound neurosensory hearing loss and speech impairment. All four disease isolates were sensitive to penicillin G, chloramphenicol, ciprofloxacin and cefotaxime and had the multi‐locus sequence type (ST) 11, which is the major ST of the ET‐37 clonal complex. Pulsed‐field gel electrophoresis (PFGE) profiles of the Ghanaian disease isolates and recent epidemic isolates from Burkina Faso were largely identical. We conducted meningococcal colonization surveys in the home communities of three of the patients and in the Kassena Nankana District located at the border to Burkina Faso. W135 carriage rates ranged between 0% and 17.5%. When three consecutive surveys were conducted in the patient community with the highest carrier rate, persistence of W135 colonization over a period of 1 year was observed. Differences in PFGE profiles of carrier isolates taken at different times in the same patient community were indicative of rapid microevolution of the W135 bacteria, emphasizing the need for innovative fine typing methods to reveal the relationship between W135 isolates.
Chemistry: A European Journal | 2011
Philipp Gersbach; Andrea Jantsch; Fabian Feyen; Nicole Scherr; Jean-Pierre Dangy; Gerd Pluschke; Karl-Heinz Altmann
The total synthesis of the mycobacterial toxins mycolactones A/B (1 a/b) has been accomplished based on a strategy built around the construction of the mycolactone core through ring-closing metathesis. By employing the Grubbs second-generation catalyst, the 12-membered core macrocycle of mycolactones, with a functionalized C2 handle attached to C11, was obtained in 60-80 % yield. The C-linked upper side chain (comprising C12-C20) was completed by a highly efficient modified Suzuki coupling between C13 and C14, while the attachment of the C5-O-linked polyunsaturated acyl side chain was achieved by Yamaguchi esterification. Surprisingly, a diene containing a simple isopropyl group attached to C11 could not be induced to undergo ring-closing metathesis. By employing fluorescence microscopy and flow cytometry techniques, the synthetic mycolactones A/B (1 a/b) were demonstrated to display similar apoptosis-inducing and cytopathic effects as mycolactones A/B extracted from Mycobacterium ulcerans. In contrast, a simplified analogue with truncated upper and lower side chains was found to be inactive.
Mbio | 2014
Araceli Lamelas; Simon R. Harris; Katharina Röltgen; Jean-Pierre Dangy; Julia Hauser; Robert A. Kingsley; Thomas Richard Connor; Ali Sié; Abraham Hodgson; Gordon Dougan; Julian Parkhill; Stephen D. Bentley; Gerd Pluschke
ABSTRACT In the African “meningitis belt,” outbreaks of meningococcal meningitis occur in cycles, representing a model for the role of host-pathogen interactions in epidemic processes. The periodicity of the epidemics is not well understood, nor is it currently possible to predict them. In our longitudinal colonization and disease surveys, we have observed waves of clonal replacement with the same serogroup, suggesting that immunity to noncapsular antigens plays a significant role in natural herd immunity. Here, through comparative genomic analysis of 100 meningococcal isolates, we provide a high-resolution view of the evolutionary changes that occurred during clonal replacement of a hypervirulent meningococcal clone (ST-7) by a descendant clone (ST-2859). We show that the majority of genetic changes are due to homologous recombination of laterally acquired DNA, with more than 20% of these events involving acquisition of DNA from other species. Signals of adaptation to evade herd immunity were indicated by genomic hot spots of recombination. Most striking is the high frequency of changes involving the pgl locus, which determines the glycosylation patterns of major protein antigens. High-frequency changes were also observed for genes involved in the regulation of pilus expression and the synthesis of Maf3 adhesins, highlighting the importance of these surface features in host-pathogen interaction and immune evasion. IMPORTANCE While established meningococcal capsule polysaccharide vaccines are protective through the induction of anticapsular antibodies, findings of our longitudinal studies in the African meningitis belt have indicated that immunity to noncapsular antigens plays a significant role in natural herd immunity. Our results show that meningococci evade herd immunity through the rapid homologous replacement of just a few key genomic loci that affect noncapsular cell surface components. Identification of recombination hot spots thus represents an eminent approach to gain insight into targets of protective natural immune responses. Moreover, our results highlight the role of the dynamics of the protein glycosylation repertoire in immune evasion by Neisseria meningitidis. These results have major implications for the design of next-generation protein-based subunit vaccines. While established meningococcal capsule polysaccharide vaccines are protective through the induction of anticapsular antibodies, findings of our longitudinal studies in the African meningitis belt have indicated that immunity to noncapsular antigens plays a significant role in natural herd immunity. Our results show that meningococci evade herd immunity through the rapid homologous replacement of just a few key genomic loci that affect noncapsular cell surface components. Identification of recombination hot spots thus represents an eminent approach to gain insight into targets of protective natural immune responses. Moreover, our results highlight the role of the dynamics of the protein glycosylation repertoire in immune evasion by Neisseria meningitidis. These results have major implications for the design of next-generation protein-based subunit vaccines.
PLOS Neglected Tropical Diseases | 2013
Nicole Scherr; Philipp Gersbach; Jean-Pierre Dangy; Claudio Bomio; Jun Li; Karl-Heinz Altmann; Gerd Pluschke
Background Mycolactones are a family of polyketide-derived macrolide exotoxins produced by Mycobacterium ulcerans, the causative agent of the chronic necrotizing skin disease Buruli ulcer. The toxin is synthesized by polyketide synthases encoded by the virulence plasmid pMUM. The apoptotic, necrotic and immunosuppressive properties of mycolactones play a central role in the pathogenesis of M. ulcerans. Methodology/Principal Findings We have synthesized and tested a series of mycolactone derivatives to conduct structure-activity relationship studies. Flow cytometry, fluorescence microscopy and Alamar Blue-based metabolic assays were used to assess activities of mycolactones on the murine L929 fibroblast cell line. Modifications of the C-linked upper side chain (comprising C12–C20) caused less pronounced changes in cytotoxicity than modifications in the lower C5-O-linked polyunsaturated acyl side chain. A derivative with a truncated lower side chain was unique in having strong inhibitory effects on fibroblast metabolism and cell proliferation at non-cytotoxic concentrations. We also tested whether mycolactones have antimicrobial activity and found no activity against representatives of Gram-positive (Streptococcus pneumoniae) or Gram-negative bacteria (Neisseria meningitis and Escherichia coli), the fungus Saccharomyces cerevisae or the amoeba Dictyostelium discoideum. Conclusion Highly defined synthetic compounds allowed to unambiguously compare biological activities of mycolactones expressed by different M. ulcerans lineages and may help identifying target structures and triggering pathways.
Mediators of Inflammation | 2013
Denis Grandgirard; Rahel Gäumann; Boubacar Coulibaly; Jean-Pierre Dangy; Ali Sié; Thomas Junghanss; Hans H Schudel; Gerd Pluschke; Stephen L. Leib
Background. The brains inflammatory response to the infecting pathogen determines the outcome of bacterial meningitis (BM), for example, the associated mortality and the extent of brain injury. The inflammatory cascade is initiated by the presence of bacteria in the cerebrospinal fluid (CSF) activating resident immune cells and leading to the influx of blood derived leukocytes. To elucidate the pathomechanisms behind the observed difference in outcome between different pathogens, we compared the inflammatory profile in the CSF of patients with BM caused by Streptococcus pneumonia (n = 14), Neisseria meningitidis (n = 22), and Haemophilus influenza (n = 9). Methods. CSF inflammatory parameters, including cytokines and chemokines, MMP-9, and nitric oxide synthase activity, were assessed in a cohort of patients with BM from Burkina Faso. Results. Pneumococcal meningitis was associated with significantly higher CSF concentrations of IFN-γ, MCP-1, and the matrix-metalloproteinase (MMP-) 9. In patients with a fatal outcome, levels of TNF-α, IL-1β, IL-1RA, IL-6, and TGF-α were significantly higher. Conclusion. The signature of pro- and anti-inflammatory mediators and the intensity of inflammatory processes in CSF are determined by the bacterial pathogen causing bacterial meningitis with pneumococcal meningitis being associated with a higher case fatality rate than meningitis caused by N. meningitidis or H. influenzae.
PLOS Neglected Tropical Diseases | 2008
Audrey Tanghe; Jean-Pierre Dangy; Gerd Pluschke; Kris Huygen
Vaccination with plasmid DNA encoding Ag85A from M. bovis BCG can partially protect C57BL/6 mice against a subsequent footpad challenge with M. ulcerans. Unfortunately, this cross-reactive protection is insufficient to completely control the infection. Although genes encoding Ag85A from M. bovis BCG (identical to genes from M. tuberculosis) and from M. ulcerans are highly conserved, minor sequence differences exist, and use of the specific gene of M. ulcerans could possibly result in a more potent vaccine. Here we report on a comparison of immunogenicity and protective efficacy in C57BL/6 mice of Ag85A from M. tuberculosis and M. ulcerans, administered as a plasmid DNA vaccine, as a recombinant protein vaccine in adjuvant or as a combined DNA prime-protein boost vaccine. All three vaccination formulations induced cross-reactive humoral and cell-mediated immune responses, although species-specific Th1 type T cell epitopes could be identified in both the NH2-terminal region and the COOH-terminal region of the antigens. This partial species-specificity was reflected in a higher—albeit not sustained—protective efficacy of the M. ulcerans than of the M. tuberculosis vaccine, particularly when administered using the DNA prime-protein boost protocol.
Tropical Medicine & International Health | 2008
Ali Sié; V. Pflüger; B. Coulibaly; Jean-Pierre Dangy; A. Kapaun; Thomas Junghanss; Gerd Pluschke; J. Leimkugel
We analysed cerebrospinal fluid samples from suspected meningitis cases in Nouna Health District, Burkina Faso, during the meningitis seasons of 2004–2006. Serogroup A ST2859 meningococci belonging to the ST5 clonal complex of subgroup III meningococci were the predominant causative agent. ST2859 bacteria were associated with focal outbreaks in the north of the district. While >10% of the population of an outbreak village carried ST2859, the population in the south of the district was predominantly colonised by serogroup Y ST4375 meningococci, which were associated with only sporadic cases of meningitis. Colonisation with the less virulent Y meningococci may interfere with the spread of the ST2859 to the south of the district, but there are concerns that this serogroup A clone may cause a third wave of subgroup III meningococcal disease in the African Meningitis Belt.
ACS Chemical Biology | 2017
Raphael Bieri; Nicole Scherr; Marie-Thérèse Ruf; Jean-Pierre Dangy; Philipp Gersbach; Matthias Gehringer; Karl-Heinz Altmann; Gerd Pluschke
Mycolactone, the macrolide exotoxin produced by Mycobacterium ulcerans, is central to the pathogenesis of the chronic necrotizing skin disease Buruli ulcer (BU). Here we show that mycolactone acts as an inhibitor of the mechanistic Target of Rapamycin (mTOR) signaling pathway by interfering with the assembly of the two distinct mTOR protein complexes mTORC1 and mTORC2, which regulate different cellular processes. Inhibition of the assembly of the rictor containing mTORC2 complex by mycolactone prevents phosphorylation of the serine/threonine protein kinase Akt. The associated inactivation of Akt leads to the dephosphorylation and activation of the Akt-targeted transcription factor FoxO3. Subsequent up-regulation of the FoxO3 target gene BCL2L11 (Bim) increases expression of the pro-apoptotic regulator Bim, driving mycolactone treated mammalian cells into apoptosis. The central role of Bim-dependent apoptosis in BU pathogenesis deduced from our experiments with cultured mammalian cells was further verified in an experimental M. ulcerans infection model. As predicted by the model, M. ulcerans infected Bim knockout mice did not develop necrotic BU lesions with large clusters of extracellular bacteria, but were able to contain the mycobacterial multiplication. Our findings provide a new coherent and comprehensive concept of BU pathogenesis.