Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jean-Pierre Féral is active.

Publication


Featured researches published by Jean-Pierre Féral.


Trends in Ecology and Evolution | 2002

Evolutionary versus ecological success in Antarctic benthic invertebrates

Elie Poulin; Alvaro T. Palma; Jean-Pierre Féral

The unusually high proportion of brooding compared with broadcaster species among coastal Antarctic invertebrates has been traditionally interpreted as an adaptation to local environmental conditions. However, species with a planktotrophic developmental mode are ecologically dominant (in terms of abundance of individuals) along Antarctic coastal areas. Therefore, is the apparent ecological success of broadcasters related to their developmental mode? We argue that the present shallow Antarctic benthic invertebrate fauna is the result of two processes acting at different temporal scales. First, the high proportion of brooding species compared with coastal communities elsewhere corresponds to species-level selection occurring over geological and evolutionary times. Second, the ecological dominance of broadcasters is the result of processes operating at ecological timescales that are associated with the advantage of having pelagic larvae under highly disturbed conditions.


Molecular Ecology | 2011

From global to local genetic structuring in the red gorgonian Paramuricea clavata: the interplay between oceanographic conditions and limited larval dispersal.

Kenza Mokhtar-Jamaï; Marta Pascual; J. B. Ledoux; Rafael Coma; Jean-Pierre Féral; Joaquim Garrabou; Didier Aurelle

Defining the scale of connectivity among marine populations and identifying the barriers to gene flow are tasks of fundamental importance for understanding the genetic structure of populations and for the design of marine reserves. Here, we investigated the population genetic structure at three spatial scales of the red gorgonian Paramuricea clavata (Cnidaria, Octocorallia), a key species dwelling in the coralligenous assemblages of the Mediterranean Sea. Colonies of P. clavata were collected from 39 locations across the Mediterranean Sea from Morocco to Turkey and analysed using microsatellite loci. Within three regions (Medes, Marseille and North Corsica), sampling was obtained from multiple locations and at different depths. Three different approaches (measures of genetic differentiation, Bayesian clustering and spatially explicit maximum‐difference algorithm) were used to determine the pattern of genetic structure. We identified genetic breaks in the spatial distribution of genetic diversity, which were concordant with oceanographic conditions in the Mediterranean Sea. We revealed a high level of genetic differentiation among populations and a pattern of isolation by distance across the studied area and within the three regions, underlining short effective larval dispersal in this species. We observed genetic differentiation among populations in the same locality dwelling at different depths, which may be explained by local oceanographic conditions and which may allow a process of local adaptation of the populations to their environment. We discuss the implications of our results for the conservation of the species, which is exposed to various threats.


Molecular Phylogenetics and Evolution | 2008

Pleistocene separation of mitochondrial lineages of Mytilus spp. mussels from Northern and Southern Hemispheres and strong genetic differentiation among southern populations

Karin Gérard; Nicolas Bierne; Philippe Borsa; Anne Chenuil; Jean-Pierre Féral

Smooth-shelled mussels, Mytilus spp., have an antitropical distribution. In the Northern Hemisphere, the M. edulis complex of species is composed of three genetically well delineated taxa: M. edulis, M. galloprovincialis and M. trossulus. In the Southern Hemisphere, morphological characters, allozymes and intron length polymorphisms suggest that Mytilus spp. populations from South America and Kerguelen Islands are related to M. edulis and those from Australasia to M. galloprovincialis. On the other hand, a phylogeny of the 16S rDNA mitochondrial locus demonstrates a clear distinctiveness of southern mussels and suggests that they are related to Mediterranean M. galloprovincialis. Here, we analysed the faster-evolving cytochrome oxidase subunit I locus. The divergence between haplotypes of populations from the two hemispheres was confirmed and was found to predate the divergence between haplotypes of northern M. edulis and M. galloprovincialis. In addition, strong genetic structure was detected among the southern samples, revealing three genetic entities that correspond to (1) South America and Kerguelen Island, (2) Tasmania, (3) New Zealand. Using the trans-Arctic interchange as a molecular clock calibration, we estimated the time since divergence of populations from the two hemispheres to be between 0.5 million years (MY) and 1.3 MY (average 0.84 MY). The contrasting patterns observed for the nuclear and the organelle genomes suggested two alternative, complex scenarios: two trans-equatorial migrations and the existence of differential barriers to mitochondrial and nuclear gene flow, or a single trans-equatorial migration and a view of the composition of the nuclear genome biased by taxonomic preconception.


Evolution | 1996

WHY ARE THERE SO MANY SPECIES OF BROODING ANTARCTIC ECHINOIDS

Elie Poulin; Jean-Pierre Féral

Marine invertebrates display a great variety of life‐history traits and reproductive strategies. In echinoids, four patterns of larval development are generally recognized: planktotrophy, pelagic lecithotrophy, bottom dwelling, and brood protecting. Each broad type of free and protected development is found in all the oceans, but comparisons of the principal reproductive modes between different geographic regions have shown that they are not equally distributed. Frequency of pelagic development (planktotrophic and lecithotrophic) decreases from equator to Antarctic, where brood protecting becomes dominant. Numerous theories have been proposed to explain the richness of nonpelagic development in most marine invertebrates within the Southern Ocean. These theories can be grouped into three categories: (1) larval survival, where selection acts on larval; (2) energy allocation; and (3) dispersal. All of them consider the adaptative significance of brood protecting as the key to the success of this strategy in the Antarctic. However, the adaptative significance of brooding and the evolutionary success of this strategy in the Antarctic must be considered as two separate questions. To consider the problem at an evolutionary level, we have examined the consequences of different reproductive strategies on the genetic structure of species and on the long‐term evolution of the clade. We examine this problem in the case of echinoids, a clade particularly well suited to addressing this question. In echinoids, the reduction of larval‐stage duration is associated with a decrease in gene flow and consequently in the geographical scale of genetic differentiation. This allows us to reconsider the high‐speciation‐rate model, which leads to an increase in the number of low‐dispersal species (isolation by distance). This model, previously tested by means of fossils is not satisfactory in living echinoids. Thus, the model is rebuilt with the addition of differential extinction rate between planktotrophic and brooding species in relation with the climatic history of the Antarctic.


Molecular Ecology | 2010

Fine-scale genetic structure and inferences on population biology in the threatened Mediterranean red coral, Corallium rubrum

J. B. Ledoux; Joaquim Garrabou; Olivier Bianchimani; Pierre Drap; Jean-Pierre Féral; Didier Aurelle

Identifying microevolutionary processes acting in populations of marine species with larval dispersal is a challenging but crucial task because of its conservation implications. In this context, recent improvements in the study of spatial genetic structure (SGS) are particularly promising because they allow accurate insights into the demographic and evolutionary processes at stake. Using an exhaustive sampling and a combination of image processing and population genetics, we highlighted significant SGS between colonies of Corallium rubrum over an area of half a square metre, which sheds light on a number of aspects of its population biology. Based on this SGS, we found the mean dispersal range within sites to be between 22.6 and 32.1 cm, suggesting that the surveyed area approximately corresponded to a breeding unit. We then conducted a kinship analysis, which revealed a complex half‐sib family structure and allowed us to quantify the level of self‐recruitment and to characterize aspects of the mating system of this species. Furthermore, significant temporal variations in allele frequencies were observed, suggesting low genetic drift. These results have important conservation implications for the red coral and further our understanding of the microevolutionary processes acting within populations of sessile marine species with a larval phase.


Molecular Ecology | 2010

Genetic survey of shallow populations of the Mediterranean red coral [Corallium rubrum (Linnaeus, 1758)]: new insights into evolutionary processes shaping nuclear diversity and implications for conservation

J. B. Ledoux; Kenza Mokhtar-Jamaï; C. Roby; Jean-Pierre Féral; Joaquim Garrabou; Didier Aurelle

Combined action from over‐harvesting and recent mass mortality events potentially linked to ongoing climate changes has led to new concerns for the conservation of shallow populations (5–60 m) of Corallium rubrum, an octocorallian that is mainly found in the Mediterranean Sea. The present study was designed to analyse population structure and relationships at different spatial scales (from 10s of meters to 100s of kilometres) with a focus on dispersal pattern. We also performed the first analysis of the distribution of genetic diversity using a comparative approach between regional‐clusters and samples. Forty populations dwelling in four distinct regions between 14 and 60 m in depth were genotyped using 10 microsatellites. Our main results indicate (i) a generalized pair‐sample differentiation combined with a weak structure between regional‐clusters; (ii) the occurrence of isolation by distance at the global scale, but also within two of the three analysed regional‐clusters; (iii) a high level of genetic diversity over the surveyed area with a heterogeneous distribution from regional‐cluster to sample levels. The evolutionary consequences of these results are discussed and their management implications are provided.


Molecular Ecology | 2008

Defining reproductively isolated units in a cryptic and syntopic species complex using mitochondrial and nuclear markers: the brooding brittle star, Amphipholis squamata (Ophiuroidea)

E. Boissin; Jean-Pierre Féral; Anne Chenuil

At a time when biodiversity is threatened, we are still discovering new species, and particularly in the marine realm. Delimiting species boundaries is the first step to get a precise idea of diversity. For sympatric species which are morphologically undistinguishable, using a combination of independent molecular markers is a necessary step to define separate species. Amphipholis squamata, a cosmopolitan brittle star, includes several very divergent mitochondrial lineages. These lineages appear totally intermixed in the field and studies on morphology and colour polymorphism failed to find any diagnostic character. Therefore, these mitochondrial lineages may be totally interbreeding presently. To test this hypothesis, we characterized the genetic structure of the complex in the French Mediterranean coast using sequences of mitochondrial DNA (16S) and for the first time, several nuclear DNA markers (introns and microsatellites). The data revealed six phylogenetic lineages corresponding to at least four biological species. These sibling species seem to live in syntopy. However, they seem to display contrasted levels of genetic diversity, suggesting they have distinct demographic histories and/or life‐history traits. Genetic differentiation and isolation‐by‐distance within the French Mediterranean coasts are revealed in three lineages, as expected for a species without a free larval phase. Finally, although recombinant nuclear genotypes are common within mitochondrial lineages, the data set displays a total lack of heterozygotes, suggesting a very high selfing rate, a feature likely to have favoured the formation of the species complex.


Genetica | 2011

Phylogeography of the red coral (Corallium rubrum): inferences on the evolutionary history of a temperate gorgonian

Didier Aurelle; J. B. Ledoux; C. Rocher; Philippe Borsa; Anne Chenuil; Jean-Pierre Féral

The red coral Corallium rubrum (Cnidaria, Octocorallia) is an exploited, long-lived sessile species from the Mediterranean Sea and the adjacent coastline in the Atlantic Ocean. Surveys of genetic variation using microsatellites have shown that populations of C. rubrum are characterized by strong differentiation at the local scale but a study of the phylogeography of this species was still lacking. Here, we used seven polymorphic microsatellite loci, together with sequence data from an intron of the elongation factor 1 (EF1) gene, to investigate the genetic structure of C. rubrum across its geographical range in the western Mediterranean Sea and in the Adriatic Sea. The EF1 sequences were also used to analyse the consequences of demographic fluctuations linked with past environmental change. Clustering analysis with microsatellite loci highlighted three to seven genetic groups with the distinction of North African and Adriatic populations; this distinction appeared significant with AMOVA and differentiation tests. Microsatellite and EF1 data extended the isolation by distance pattern previously observed for this species at the western Mediterranean scale. EF1 sequences confirmed the genetic differentiation observed between most samples with microsatellites. A statistical parsimony network of EF1 haplotypes provided no evidence of high sequence divergence among regions, suggesting no long-term isolation. Selective neutrality tests on microsatellites and EF1 were not significant but should be interpreted with caution in the case of EF1 because of the low sample sizes for this locus. Our results suggest that recent Quaternary environmental fluctuations had a limited impact on the genetic structure of C. rubrum.


Frontiers in Marine Science | 2016

Implementing and Innovating Marine Monitoring Approaches for Assessing Marine Environmental Status

Roberto Danovaro; Laura Carugati; Berzano Marco; Abigail E. Cahill; Susana De Carvalho Spinola; Anne Chenuil; Cinzia Corinaldesi; Cristina Sonia; Romain David; Antonio Dell'Anno; Nina Dzhembekova; Esther Garcés; Joseph Gasol; Goela Priscila; Jean-Pierre Féral; Isabel Ferrera; Rodney M. Forster; Andrey A. Kurekin; Eugenio Rastelli; Veselka Marinova; Peter I. Miller; Snejana Moncheva; Alice Newton; John K. Pearman; Sophie G. Pitois; Albert Reñé; Naiara Rodríguez-Ezpeleta; Stefan G. H. Simis; Kremena Stefanova; Christian Wilson

Marine environmental monitoring has tended to focus on site-specific methods of investigation. These traditional methods have low spatial and temporal resolution and are relatively labor intensive per unit area/time that they cover. To implement the Marine Strategy Framework Directive (MSFD), European Member States are required to improve marine monitoring and design monitoring networks. This can be achieved by developing and testing innovative and cost-effective monitoring systems, as well as indicators of environmental status. Here, we present several recently developed methodologies and technologies to improve marine biodiversity indicators and monitoring methods. The innovative tools are discussed concerning the technologies presently utilized as well as the advantages and disadvantages of their use in routine monitoring. In particular, the present analysis focuses on: (i) molecular approaches, including microarray, Real Time quantitative PCR (qPCR), and metagenetic (metabarcoding) tools; (ii) optical (remote) sensing and acoustic methods; and (iii) in situ monitoring instruments. We also discuss their applications in marine monitoring within the MSFD through the analysis of case studies in order to evaluate their potential utilization in future routine marine monitoring. We show that these recently-developed technologies can present clear advantages in accuracy, efficiency and cost.


PLOS ONE | 2013

Is the Species Flock Concept Operational? The Antarctic Shelf Case

Guillaume Lecointre; Nadia Améziane; Marie-Catherine Boisselier; Céline Bonillo; Frédéric Busson; Romain Causse; Anne Chenuil; Arnaud Couloux; Jean-Pierre Coutanceau; Corinne Cruaud; Cédric d'Udekem d'Acoz; Chantal De Ridder; Gaël Pierre Julien Denys; Agnès Dettai; Guy Duhamel; Marc Eléaume; Jean-Pierre Féral; Cyril Gallut; Charlotte Havermans; Christoph Held; Lenaïg G. Hemery; Anne-Claire Lautrédou; Patrick Martin; Catherine Ozouf-Costaz; Benjamin Pierrat; Patrice Pruvost; Nicolas Puillandre; Sarah Samadi; Thomas Saucède; Christoph D. Schubart

There has been a significant body of literature on species flock definition but not so much about practical means to appraise them. We here apply the five criteria of Eastman and McCune for detecting species flocks in four taxonomic components of the benthic fauna of the Antarctic shelf: teleost fishes, crinoids (feather stars), echinoids (sea urchins) and crustacean arthropods. Practical limitations led us to prioritize the three historical criteria (endemicity, monophyly, species richness) over the two ecological ones (ecological diversity and habitat dominance). We propose a new protocol which includes an iterative fine-tuning of the monophyly and endemicity criteria in order to discover unsuspected flocks. As a result nine « full » species flocks (fulfilling the five criteria) are briefly described. Eight other flocks fit the three historical criteria but need to be further investigated from the ecological point of view (here called « core flocks »). The approach also shows that some candidate taxonomic components are no species flocks at all. The present study contradicts the paradigm that marine species flocks are rare. The hypothesis according to which the Antarctic shelf acts as a species flocks generator is supported, and the approach indicates paths for further ecological studies and may serve as a starting point to investigate the processes leading to flock-like patterning of biodiversity.

Collaboration


Dive into the Jean-Pierre Féral's collaboration.

Top Co-Authors

Avatar

Anne Chenuil

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Bruno David

University of Burgundy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Didier Aurelle

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. B. Ledoux

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Michel Jangoux

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge