Jean-Pierre Hubaux
École Polytechnique Fédérale de Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jean-Pierre Hubaux.
Cluster Computing | 2002
Srdjan Capkun; Maher Hamdi; Jean-Pierre Hubaux
We consider the problem of node positioning in ad hoc networks. We propose a distributed, infrastructure-free positioning algorithm that does not rely on GPS (Global Positioning System). Instead, the algorithm uses the distances between the nodes to build a relative coordinate system in which the node positions are computed in two dimensions. Despite the distance measurement errors and the motion of the nodes, the algorithm provides sufficient location information and accuracy to support basic network functions. Examples of applications where this algorithm can be used include Location Aided Routing [10] and Geodesic Packet Forwarding [2]. Another example are sensor networks, where mobility is less of a problem. The main contribution of this work is to define and compute relative positions of the nodes in an ad hoc network without using GPS. We further explain how the proposed approach can be applied to wide area ad hoc networks.
Mobile Networks and Applications | 2003
Levente Buttyán; Jean-Pierre Hubaux
In military and rescue applications of mobile ad hoc networks, all the nodes belong to the same authority; therefore, they are motivated to cooperate in order to support the basic functions of the network. In this paper, we consider the case when each node is its own authority and tries to maximize the benefits it gets from the network. More precisely, we assume that the nodes are not willing to forward packets for the benefit of other nodes. This problem may arise in civilian applications of mobile ad hoc networks. In order to stimulate the nodes for packet forwarding, we propose a simple mechanism based on a counter in each node. We study the behavior of the proposed mechanism analytically and by means of simulations, and detail the way in which it could be protected against misuse.
security of ad hoc and sensor networks | 2007
Maxim Raya; Jean-Pierre Hubaux
Vehicular networks are very likely to be deployed in the coming years and thus become the most relevant form of mobile ad hoc networks. In this paper, we address the security of these networks. We provide a detailed threat analysis and devise an appropriate security architecture. We also describe some major design decisions still to be made, which in some cases have more than mere technical implications. We provide a set of security protocols, we show that they protect privacy and we analyze their robustness and efficiency.
international conference on computer communications | 2005
Jun Luo; Jean-Pierre Hubaux
Although many energy efficient/conserving routing protocols have been proposed for wireless sensor networks, the concentration of data traffic towards a small number of base stations remains a major threat to the network lifetime. The main reason is that the sensor nodes located near a base station have to relay data for a large part of the network and thus deplete their batteries very quickly. The solution we propose in this paper suggests that the base station be mobile; in this way, the nodes located close to it change over time. Data collection protocols can then be optimized by taking both base station mobility and multi-hop routing into account. We first study the former, and conclude that the best mobility strategy consists in following the periphery of the network (we assume that the sensors are deployed within a circle). We then consider jointly mobility and routing algorithms in this case, and show that a better routing strategy uses a combination of round routes and short paths. We provide a detailed analytical model for each of our statements, and corroborate it with simulation results. We show that the obtained improvement in terms of network lifetime is in the order of 500%.
IEEE Transactions on Mobile Computing | 2003
Srdjan Capkun; Levente Buttyán; Jean-Pierre Hubaux
In contrast with conventional networks, mobile ad hoc networks usually do not provide online access to trusted authorities or to centralized servers, and they exhibit frequent partitioning due to link and node failures and to node mobility. For these reasons, traditional security solutions that require online trusted authorities or certificate repositories are not well-suited for securing ad hoc networks. We propose a fully self-organized public-key management system that allows users to generate their public-private key pairs, to issue certificates, and to perform authentication regardless of the network partitions and without any centralized services. Furthermore, our approach does not require any trusted authority, not even in the system initialization phase.
mobile ad hoc networking and computing | 2001
Jean-Pierre Hubaux; Levente Buttyán; Srdjan Capkun
So far, research on mobile ad hoc networks has been forcused primarily on routing issues. Security, on the other hand, has been given a lower priority. This paper provides an overview of security problems for mobile ad hoc networks, distinguishing the threats on basic mechanisms and on security mechanisms. It then describes our solution to protect the security mechanisms. The original features of this solution include that (i) it is fully decentralized and (ii) all nodes are assigned equivalent roles.
security of ad hoc and sensor networks | 2005
Maxim Raya; Jean-Pierre Hubaux
Vehicular networks are likely to become the most relevant form of mobile ad hoc networks. In this paper, we address the security of these networks. We provide a detailed threat analysis and devise an appropriate security architecture. We also describe some major design decisions still to be made, which in some cases have more than mere technical implications. We provide a set of security protocols, we show that they protect privacy and we analyze their robustness, and we carry out a quantitative assessment of the proposed solution.
hawaii international conference on system sciences | 2001
Srdjan Capkun; Maher Hamdi; Jean-Pierre Hubaux
We consider the problem of node positioning in ad-hoc networks. We propose a distributed, infrastructure-free positioning algorithm that does not rely on Global Positioning System (GPS). The algorithm uses the distances between the nodes to build a relative coordinate system in which the node positions are computed in two dimensions. The main contribution of this work is to define and compute relative positions of the nodes in an ad-hoc network without using GPS. We further explain how the proposed approach can be applied to wide area ad-hoc networks.
ieee symposium on security and privacy | 2004
Jean-Pierre Hubaux; Srdjan Capkun; Jun Luo
Road safety, traffic management, and driver convenience continue to improve, in large part thanks to appropriate usage of information technology. But this evolution has deep implications for security and privacy, which the research community has overlooked so far.
IEEE Wireless Communications | 2006
Maxim Raya; Panos Papadimitratos; Jean-Pierre Hubaux
The road to a successful introduction of vehicular communications has to pass through the analysis of potential security threats and the design of a robust security architecture able to cope with these threats. In this article we undertake this challenge. In addition to providing a survey of related academic and industrial efforts, we also outline several open problems