Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jean-Pierre Rospars is active.

Publication


Featured researches published by Jean-Pierre Rospars.


Cell and Tissue Research | 1992

Anatomical identification of glomeruli in the antennal lobes of the male sphinx moth Manduca sexta

Jean-Pierre Rospars; John G. Hildebrand

SummaryComputer-assisted neuroanatomical methods have been used to demonstrate unique identities of the glomeruli of the antennal lobes (ALs) in males of the sphinx moth Manduca sexta. The glomerular neuropil consists of the male-specific macroglomerular complex, which comprises two closely apposed bulky subunits, and 64±1 “ordinary” glomeruli arrayed in a shell around a central region of coarse neuropil. Computergenerated maps show the exact locations of all glomeruli and adjacent groups of neuronal somata in a constant Cartesian coordinate system, such that these can be accurately identified in any individual. The glomeruli belong to three classes according to the number and type of identification criteria they satisfy. The larger class comprises glomeruli (n=44) identified only in the computer-generated maps on the basis of their relative positions. The other two classes include glomeruli that were also identified in sections, either directly from their proximity to readily identifiable structures and their shape and size (n=10, including the labial-palp-pit-organ (LPO) glomerulus), or indirectly from their positions relative to the former (n=9). Two very small glomeruli were present in only one AL, demonstrating the existence of anomalous glomeruli, whereas another glomerulus had no homologue in both ALs of one individual. The true number of ordinary glomeruli (per male AL) was thus estimated to be 64. The uncertainty in delineating some glomeruli might affect this number without implying modification of the homologies proposed. The locations of tracts and cell groups, both within and near the AL, are also invariant with respect to glomeruli, as shown in the computer maps. The methods employed are general and might be useful to researchers in related fields. The results obtained call for more attention to the precise geometry of neural structures.


The Journal of Neuroscience | 2008

Competitive and Noncompetitive Odorant Interactions in the Early Neural Coding of Odorant Mixtures

Jean-Pierre Rospars; Petr Lansky; Michel Chaput; Patricia Duchamp-Viret

Most olfactory receptor neurons (ORNs) express a single type of olfactory receptor that is differentially sensitive to a wide variety of odorant molecules. The diversity of possible odorant-receptor interactions raises challenging problems for the coding of complex mixtures of many odorants, which make up the vast majority of real world odors. Pure competition, the simplest kind of interaction, arises when two or more agonists can bind to the main receptor site, which triggers receptor activation, although only one can be bound at a time. Noncompetitive effects may result from various mechanisms, including agonist binding to another site, which modifies the receptor properties at the main binding site. Here, we investigated the electrophysiological responses of rat ORNs in vivo to odorant agonists and their binary mixtures and interpreted them in the framework of a quantitative model of competitive interaction between odorants. We found that this model accounts for all concentration-response curves obtained with single odorants and for about half of those obtained with binary mixtures. In the other half, the shifts of curves along the concentration axis and the changes of maximal responses with respect to model predictions, indicate that noncompetitive interactions occur and can modulate olfactory receptors. We conclude that, because of their high frequency, the noncompetitive interactions play a major role in the neural coding of natural odorant mixtures. This finding implies that the CNS activity caused by mixtures will not be easily analyzed into components, and that mixture responses will be difficult to generalize across concentration.


European Journal of Neuroscience | 2003

Relation between stimulus and response in frog olfactory receptor neurons in vivo

Jean-Pierre Rospars; Petr Lánský; André Duchamp; Patricia Duchamp-Viret

The spiking activity of receptor neurons was recorded extracellularly in the frog olfactory epithelium in response to four odourants applied at precisely controlled concentrations. A set of criteria was formulated to define the spikes in the response. Four variables – latency, duration, number of interspike intervals and frequency – were determined to quantify the responses. They were studied at the single neuron, neuron population and ciliary membrane levels. The dose–response curves were determined using specific functions and their characteristics were evaluated. The characteristic molar concentrations at threshold or at maximum duration and the characteristics of variables, e.g. minimum latency or maximum frequency, have asymmetric histograms with peaks close to the origin and long tails. Dynamic ranges have even more asymmetric histograms, so that a significant fraction of neurons presents a much wider range than their one‐decade peak. From these histograms, response properties of the whole neuron population can be inferred. In general, location along the concentration axis (thresholds), width (dynamic ranges) and heights of dose–response curves are independent, which explains the diversity of curves, prevents their global categorization and supports the qualitative coding of odourants. No evidence for odourant‐independent types of neurons was found. Finally, receptor activation and ciliary membrane conductance were reconstructed in the framework of a model based on firing data, known mucus biochemical and neuron morpho‐electrical characteristics. It is in agreement with independent determinations of Kd of odourant–receptor interaction and of conductance characteristics, and describes their statistical distributions in the neuron population.


BioSystems | 2000

Spiking frequency versus odorant concentration in olfactory receptor neurons

Jean-Pierre Rospars; Petr Lánský; Patricia Duchamp-Viret; André Duchamp

The spiking response of receptor neurons to various odorants has been analyzed at different concentrations. The interspike intervals were measured extracellularly before, during and after the stimulation from the olfactory epithelium of the frog Rana ridibunda. First, a quantitative method was developed to distinguish the spikes in the response from the spontaneous activity. Then, the response intensity, characterized by its median instantaneous frequency, was determined. Finally, based on statistical analyses, this characteristic was related to the concentration and quality of the odorant stimulus. It was found that the olfactory neuron is characterized by a low modulation in frequency and a short range of discriminated intensities. The significance of the results is discussed from both a biological and a modelling point of view.


Brain Research | 1994

Spontaneous activity of first- and second-order neurons in the frog olfactory system

Jean-Pierre Rospars; Petr Lánský; Jean Vaillant; Patricia Duchamp-Viret; A. Duchamp

The spontaneous activity of first-order neurons (neuroreceptors of the mucosa) and second-order neurons (mitral cells of the bulb) was recorded extracellularly in the frog olfactory system. To assess the influence of peripheral inputs upon mitral cells, the bulb was either normally connected or partially deafferented. Our first set of findings concern the firing behavior. We found that most neurons generated interspike intervals (ISIs) that were stationary in mean and variance, and were not serially correlated at first and second order. Individual spikes in mitral cells and bursts of spikes in neuroreceptors were found to be generated by a Poisson process. Stochastic modeling suggests that the Poissonian behavior depends on the mean value of the membrane potential at the axon hillock. In these models, the mean potential in mitral cells would be far below the firing threshold and in neuroreceptors it would fluctuate at random between two states, one close to resting potential (between bursts) and the other close to the firing threshold with occasional crossings (within bursts). Secondly, partially deafferented mitral cells had significantly higher activity and lower variance than mitral cells receiving normal afferent input. This effect gives evidence that peripheral inputs influence mitral cells at rest not only through direct excitation but also through indirect inhibition exerted by local neurons. Thus, the unstimulated state of the olfactory bulb would not be qualitatively different from its stimulated state in the sense that both states involve the same types of synaptic interactions. Consequently, understanding the synaptic relationships that take place in the bulb network can benefit from studies of its spontaneous activity.


European Journal of Neuroscience | 2007

Neuronal coding and spiking randomness.

Lubomir Kostal; Petr Lansky; Jean-Pierre Rospars

Fast information transfer in neuronal systems rests on series of action potentials, the spike trains, conducted along axons. Methods that compare spike trains are crucial for characterizing different neuronal coding schemes. In this paper we review recent results on the notion of spiking randomness, and discuss its properties with respect to the rate and temporal coding schemes. This method is compared with other widely used characteristics of spiking activity, namely the variability of interspike intervals, and it is shown that randomness and variability provide two distinct views. We demonstrate that estimation of spiking randomness from simulated and experimental data is capable of capturing characteristics that would otherwise be difficult to obtain with conventional methods.


Journal of Computational Neuroscience | 1996

Coding of Odor Intensity in a Steady-State Deterministic Model of an Olfactory Receptor Neuron

Jean-Pierre Rospars; Petr Lánský; Henry C. Tuckwell; Arthur Vermeulen

The coding of odor intensity by an olfactory receptor neuron model was studied under steady-state stimulation. Our model neuron is an elongated cylinder consisting of the following three components: a sensory dendritic region bearing odorant receptors, a passive region consisting of proximal dendrite and cell body, and an axon. First, analytical solutions are given for the three main physiological responses: (1) odorant-dependent conductance change at the sensory dendrite based on the Michaelis-Menten model, (2) generation and spreading of the receptor potential based on a new solution of the cable equation, and (3) firing frequency based on a Lapicque model. Second, the magnitudes of these responses are analyzed as a function of odorant concentration. Their dependence on chemical, electrical, and geometrical parameters is examined. The only evident gain in magnitude results from the activation-to-conductance conversion. An optimal encoder neuron is presented that suggests that increasing the length of the sensory dendrite beyond about 0.3 space constant does not increase the magnitude of the receptor potential. Third, the sensivities of the responses are examined as functions of (1) the concentration at half-maximum response, (2) the lower and upper concentrations actually discriminated, and (3) the width of the dynamic range. The overall gain in sensitivity results entirely from the conductance-to-voltage conversion. The maximum conductance at the sensory dendrite appears to be the main tuning constant of the neuron because it determines the shift toward low concentrations and the increase in dynamic range. The dynamic range of the model cannot exceed 5.7 log units, for a sensitivity increase at low odor concentration is compensated by a sensitivity decrease at high odor concentration.


The Journal of Experimental Biology | 2012

Plant odour stimuli reshape pheromonal representation in neurons of the antennal lobe macroglomerular complex of a male moth

Antoine Chaffiol; Jan Kropf; Romina B. Barrozo; Christophe Gadenne; Jean-Pierre Rospars; Sylvia Anton

SUMMARY Male moths are confronted with complex odour mixtures in a natural environment when flying towards a female-emitted sex pheromone source. Whereas synergistic effects of sex pheromones and plant odours have been observed at the behavioural level, most investigations at the peripheral level have shown an inhibition of pheromone responses by plant volatiles, suggesting a potential role of the central nervous system in reshaping the peripheral information. We thus investigated the interactions between sex pheromone and a behaviourally active plant volatile, heptanal, and their effects on responses of neurons in the pheromone-processing centre of the antennal lobe, the macroglomerular complex, in the moth Agrotis ipsilon. Our results show that most of these pheromone-sensitive neurons responded to the plant odour. Most neurons responded to the pheromone with a multiphasic pattern and were anatomically identified as projection neurons. They responded either with excitation or pure inhibition to heptanal, and the response to the mixture pheromone + heptanal was generally weaker than to the pheromone alone, showing a suppressive effect of heptanal. However, these neurons responded with a better resolution to pulsed stimuli. The other neurons with either purely excitatory or inhibitory responses to all three stimuli did not exhibit significant differences in responses between stimuli. Although the suppression of the pheromone responses in AL neurons by the plant odour is counter-intuitive at first glance, the observed better resolution of pulsed stimuli is probably more important than high sensitivity to the localization of a calling female.


Journal of Clinical Neurophysiology | 2003

Single-unit analysis of the spinal dorsal horn in patients with neuropathic pain.

Marc Guénot; Jean Bullier; Jean-Pierre Rospars; Petr Lansky; Patrick Mertens; Marc Sindou

Summary Despite the key role played by the dorsal horn of the spinal cord in pain modulation, single-unit recordings have only been performed very rarely in this structure in humans. The authors report the results of a statistical analysis of 64 unit recordings from the human dorsal horn. The recordings were done in three groups of patients: patients with deafferentation pain resulting from brachial plexus avulsion, patients with neuropathic pain resulting from peripheral nerve injury, and patients with pain resulting from disabling spasticity. The patterns of neuronal activities were compared among these three groups. Nineteen neurons were recorded in the dorsal horns of five patients undergoing DREZotomy for a persistent pain syndrome resulting from peripheral nerve injury (i.e., nondeafferented dorsal horns), 31 dorsal horn neurons were recorded in nine patients undergoing DREZotomy for a persistent pain syndrome resulting from brachial plexus avulsion (i.e., deafferented dorsal horns), and 14 neurons were recorded in eight patients undergoing DREZotomy for disabling spasticity. These groups were compared in terms of mean frequency, coefficient of variation of the discharge, other properties of the neuronal discharge studied by the nonparametric test of Wald–Wolfowitz, and the possible presence of bursts. The coefficient of variation tended to be higher in the deafferented dorsal horn group than in the other two groups. Two neurons displaying burst activity could be recorded, both of which belonged to the deafferented dorsal horn group. A significant difference was found in term of neuronal behavior between the peripheral nerve trauma group and the other groups: The brachial plexus avulsion and disabling spasticity groups were very similar, including various types of neuronal behavior, whereas the peripheral nerve lesion group included mostly neurons with “nonrandom” patterns of discharge (i.e., with serial dependency of interspike intervals).


BioSystems | 1993

Coding of odor intensity

Petr Lánský; Jean-Pierre Rospars

A model for coding of odor intensity in the first two neuronal layers of olfactory systems is proposed. First, the occupation and activation by odorant molecules of receptor proteins of different types borne by the first order neurons are described as birth and death processes. The occupation (birth) rate depends on the concentration of the odorant, whereas the probability of activation of an occupied receptor depends on the type of the odorant. Second, the spike generation mechanism proposed for the first order neuron depends on the level of the generator potential evoked by the activated receptors and on a time-decaying threshold which is reset to infinity after each spike. The various resulting stochastic regimes of firing activity at different concentrations are described. Third, each second order neuron is influenced by excitation coming from numerous first order neurons, lateral inhibition from other second order neurons, and self-inhibition. All these incoming signals are integrated at the second order neuron. The firing activity of the first and second order neurons is modeled by a first passage time scheme. For both types of neuron the shapes of the curves predicted by the model for the mean firing frequency as a function of stimulus concentration are shown to be in accordance with available experimental results.

Collaboration


Dive into the Jean-Pierre Rospars's collaboration.

Top Co-Authors

Avatar

Dominique Martinez

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Petr Lansky

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Philippe Lucas

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Petr Lánský

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Arthur Vermeulen

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Sylvia Anton

Pierre-and-Marie-Curie University

View shared research outputs
Top Co-Authors

Avatar

Antoine Chaffiol

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Yuqiao Gu

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hana Belmabrouk

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge