Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jean Pouliot is active.

Publication


Featured researches published by Jean Pouliot.


International Journal of Radiation Oncology Biology Physics | 1997

Electronic portal imaging device detection of radioopaque markers for the evaluation of prostate position during megavoltage irradiation: A clinical study

E. Vigneault; Jean Pouliot; Jacques Laverdière; Jean Roy; Marc Dorion

PURPOSE This study was designed to assess daily prostatic apex motion relative to pelvic bone structures during megavoltage irradiation. METHODS AND MATERIALS Radioopaque markers were implanted under ultrasound guidance near the prostatic apex of 11 patients with localized prostatic carcinoma. Patients were subsequently treated with a four field-box technique at a beam energy of 23 MV. During treatment, on-line images were obtained with an electronic portal imaging device (EPID). The marker was easily identified, even on unprocessed images, and the distance between the marker and a bony landmark was measured. Timelapse movies were also reviewed. After the completion of treatment, a transrectal ultrasound examination was performed in 8 of 11 patients, to verify the position of the marker. RESULTS We acquired over 900 digital portal images and analyzed posterioanterior and right lateral views. The quality of portal images obtained with megavoltage irradiation was good. It was possible to evaluate pelvic bone structures even without image histogram equalization. Moreover, the radioopaque marker was easily visible on every online portal image. The review of timelapse movies showed important interfraction motion of the marker while bone structures remained stable. We measured the position of the marker for each fraction. Marker displacements up to 1.6 cm were measured between 2 consecutive days of treatment. Important marker motions were predominantly in the posteroanterior and cephalocaudal directions. In eight patients, we verified the position of the marker relative to the prostatic apex with ultrasound at the end of the treatments. The marker remained in the trapezoid zone. Intratreatment images reviewed in two cases showed no-change in marker position. Our results, obtained during the treatment courses, indicate similar or larger prostate motions than previously observed in studies that used intertreatment x-ray films and CT images. Marker implantation under transrectal ultrasound was well tolerated. CONCLUSIONS Radioopaque marker and the use of electronic portal imaging give a direct evaluation of prostatic motion during radiation treatment. As suggested in previous studies the motions observed are predominantly in the posteroanterior and cephalocaudal directions. Therefore, prostate motion during treatment is important and must be considered especially when using conformal therapy.


International Journal of Radiation Oncology Biology Physics | 2003

Evaluation of ultrasound-based prostate localization for image-guided radiotherapy.

Katja M. Langen; Jean Pouliot; C. Anezinos; M Aubin; Alexander Gottschalk; I-C. Hsu; D. Lowther; Yu-Ming Liu; Katsuto Shinohara; Lynn Verhey; Vivian Weinberg; M. Roach

To evaluate the use of the ultrasound-based BAT system for daily prostate alignment. Prostate alignments using the BAT system were compared with alignments using radiographic images of implanted radiopaque markers. The latter alignments were used as a reference. The difference between the BAT and marker alignments represents the displacements that would remain if the alignments were done using ultrasonography. The inter-user variability of the contour alignment process was assessed. On the basis of the marker alignments, the initial displacement of the prostate in the AP, superoinferior, and lateral direction was -0.9 +/- 3.9, 0.1 +/- 3.9, and 0.2 +/- 3.4 mm respectively. The directed differences between the BAT and marker alignments in the respective directions were 0.2 +/- 3.7, 2.7 +/- 3.9, and 1.6 +/- 3.1 mm. The occurrence of displacements >/=5 mm was reduced by a factor of two in the AP direction after the BAT system was used. Among eight users, the average range of couch shifts due to contour alignment variability was 7, 7, and 5 mm in the antero-posterior (AP), superoinferior, and lateral direction, respectively. In our study, the BAT alignments were systematically different from the marker alignments in the superoinferior, and lateral directions. The remaining random variability of the prostate position after the ultrasound-based alignment was similar to the initial variability. However, the occurrence of displacements >/=5 mm was reduced in the AP direction. The inter-user variation of the contour alignment process was significant.


Medical Physics | 2001

Inverse planning anatomy‐based dose optimization for HDR‐brachytherapy of the prostate using fast simulated annealing algorithm and dedicated objective function

Etienne Lessard; Jean Pouliot

An anatomy-based dose optimization algorithm is developed to automatically and rapidly produce a highly conformal dose coverage of the target volume while minimizing urethra, bladder, and rectal doses in the delivery of an high dose-rate (HDR) brachytherapy boost for the treatment of prostate cancer. The dwell times are optimized using an inverse planning simulated annealing algorithm (IPSA) governed entirely from the anatomy extracted from a CT and by a dedicated objective function (cost function) reflecting clinical prescription and constraints. With this inverse planning approach, the focus is on the physicians prescription and constraint instead of on the technical limitations. Consequently, the physicians control on the treatment is improved. The capacity of this algorithm to represent the physicians prescription is presented for a clinical prostate case. The computation time (CPU) for IPSA optimization is less than 1 min (41 s for 142915 iterations) for a typical clinical case, allowing fast and practical dose optimization. The achievement of highly conformal dose coverage to the target volume opens the possibility to deliver a higher dose to the prostate without inducing overdosage of urethra and normal tissues surrounding the prostate. Moreover, using the same concept, it will be possible to deliver a boost dose to a delimited tumor volume within the prostate. Finally, this method can be easily extended to other anatomical sites.


Brachytherapy | 2012

American Brachytherapy Society consensus guidelines for high-dose-rate prostate brachytherapy.

Yoshiya Yamada; Leland Rogers; D. Jeffrey Demanes; Gerard Morton; Bradley R. Prestidge; Jean Pouliot; Gil’ad N. Cohen; Marco Zaider; M. Ghilezan; I-Chow Hsu

PURPOSE A well-established body of literature supports the use of high-dose-rate (HDR) brachytherapy as definitive treatment for localized prostate cancer. Most of the articles describe HDR as a boost with adjuvant external beam radiation, but there is a growing experience with HDR monotherapy. METHODS AND MATERIALS The American Brachytherapy Society has convened a group of expert practitioners and physicists to develop guidelines for the use of HDR in the management of prostate cancer. This involved an extensive literature review and input from an expert panel. RESULTS Despite a wide variation in doses and fractionation reported, HDR brachytherapy provides biochemical control rates of 85-100%, 81-100%, and 43-93% for low-, intermediate-, and high-risk prostate cancers, respectively. Severe toxicity is rare, with most authors reporting less than 5% Grade 3 or higher toxicity. Careful attention to patient evaluation for appropriate patient selection, meticulous technique, treatment planning, and delivery are essential for successful treatment. CONCLUSION The clinical outcomes for HDR are excellent, with high rates of biochemical control, even for high-risk disease, with low morbidity. HDR monotherapy, both for primary treatment and salvage, are promising treatment modalities.


International Journal of Radiation Oncology Biology Physics | 2003

(NON)-MIGRATION OF RADIOPAQUE MARKERS USED FOR ON-LINE LOCALIZATION OF THE PROSTATE WITH AN ELECTRONIC PORTAL IMAGING DEVICE

Jean Pouliot; Michele Aubin; Katja M. Langen; Yu-Ming Liu; Barby Pickett; Katsuto Shinohara; Mack Roach

PURPOSE Radiopaque gold markers can be implanted in the prostate to visualize its position on portal images during radiation therapy. This procedure assumes that the markers do not move within the prostate. In this work we test this assumptiom. METHODS AND MATERIALS Three markers were implanted transrectally in the prostate of patients undergoing external radiation therapy. An orthogonal pair of portal images was acquired periodically throughout the course of radiation therapy with an a-Si electronic portal imaging device (EPID). The marker coordinates were determined, and the distances between the implanted markers were recorded. The distance time trend is used to evaluate the magnitude of marker migration. RESULTS The average standard deviation (SD) of the distances between markers was 1.3 mm (range 0.44 to 3.04 mm). Three of the 11 patients show a SD larger than 2 mm. For these patients, all three distances show a simultaneous reduction with time, compatible with a shrinking of the prostate. All had been treated with neoadjuvant hormone therapy. For 1 of the 3 patients, this reduction in volume was confirmed with a repeat computed tomographic scan. CONCLUSION None of the 33 markers studied migrated significantly. The implantation of three radiopaque gold markers enables accurate and precise on-line verification of the prostate position during external beam radiation therapy. The use of three markers provides a tool to monitor prostate position and volume changes that can occur over time due to hormone or radiation therapy.


Medical Physics | 2012

Quality assurance for image-guided radiation therapy utilizing CT-based technologies: A report of the AAPM TG-179

Jean-Pierre Bissonnette; P Balter; Lei Dong; Katja M. Langen; D. Michael Lovelock; Moyed Miften; D Moseley; Jean Pouliot; Jan Jakob Sonke; S Yoo

PURPOSE Commercial CT-based image-guided radiotherapy (IGRT) systems allow widespread management of geometric variations in patient setup and internal organ motion. This document provides consensus recommendations for quality assurance protocols that ensure patient safety and patient treatment fidelity for such systems. METHODS The AAPM TG-179 reviews clinical implementation and quality assurance aspects for commercially available CT-based IGRT, each with their unique capabilities and underlying physics. The systems described are kilovolt and megavolt cone-beam CT, fan-beam MVCT, and CT-on-rails. A summary of the literature describing current clinical usage is also provided. RESULTS This report proposes a generic quality assurance program for CT-based IGRT systems in an effort to provide a vendor-independent program for clinical users. Published data from long-term, repeated quality control tests form the basis of the proposed test frequencies and tolerances. CONCLUSION A program for quality control of CT-based image-guidance systems has been produced, with focus on geometry, image quality, image dose, system operation, and safety. Agreement and clarification with respect to reports from the AAPM TG-101, TG-104, TG-142, and TG-148 has been addressed.


Medical Physics | 2012

The need for application‐based adaptation of deformable image registration

N Kirby; Cynthia H. Chuang; Utako Ueda; Jean Pouliot

PURPOSE To utilize a deformable phantom to objectively evaluate the accuracy of 11 different deformable image registration (DIR) algorithms. METHODS The phantom represents an axial plane of the pelvic anatomy. Urethane plastic serves as the bony anatomy and urethane rubber with three levels of Hounsfield units (HU) is used to represent fat and organs, including the prostate. A plastic insert is placed into the phantom to simulate bladder filling. Nonradiopaque markers reside on the phantom surface. Optical camera images of these markers are used to measure the positions and determine the deformation from the bladder insert. Eleven different DIR algorithms are applied to the full and empty-bladder computed tomography images of the phantom (fixed and moving volumes, respectively) to calculate the deformation. The algorithms include those from MIM Software (MIM) and Velocity Medical Solutions (VEL) and nine different implementations from the deformable image registration and adaptive radiotherapy toolbox for Matlab. These algorithms warp one image to make it similar to another, but must utilize a method for regularization to avoid physically unrealistic deformation scenarios. The mean absolute difference (MAD) between the HUs at the marker locations on one image and the calculated location on the other serves as a metric to evaluate the balance between image similarity and regularization. To demonstrate the effect of regularization on registration accuracy, an additional beta version of MIM was created with a variable smoothness factor that controls the emphasis of the algorithm on regularization. The distance to agreement between the measured and calculated marker deformations is used to compare the overall spatial accuracy of the DIR algorithms. This overall spatial accuracy is also utilized to evaluate the phantom geometry and the ability of the phantom soft-tissue heterogeneity to represent patient data. To evaluate the ability of the DIR algorithms to accurately transfer anatomical contours, the rectum is delineated on both the fixed and moving images. A Dice similarity coefficient is then calculated between the contour on the fixed image and that transferred, via the calculated deformation, from the moving to the fixed image. RESULTS The phantom possesses sufficient soft-tissue heterogeneity to act as a proxy for patient data. Large discrepancies appear between the algorithms and the measured ground-truth deformation. VEL yields the smallest mean spatial error and a Dice coefficient of 0.90. MIM produces the lowest MAD value and the highest Dice coefficient of 0.96, but creates the largest spatial errors. Increasing the MIM smoothness factor above the default value improves the overall spatial accuracy, but the factor associated with the lowest mean error decreases the Dice coefficient to 0.85. CONCLUSIONS Different applications of DIR require disparate balances between image similarity and regularization. A DIR algorithm that is optimized only for its ability to transfer anatomical contours will yield large deformation errors in homogeneous regions, which is problematic for dose mapping. For this reason, these algorithms must be tested for their overall spatial accuracy. The developed phantom is an objective tool for this purpose.


international conference on robotics and automation | 2003

Needle insertion and radioactive seed implantation in human tissues: simulation and sensitivity analysis

Ron Alterovitz; Ken Goldberg; Jean Pouliot; Richard Taschereau; I-Chow Hsu

To facilitate training and planning for medical procedures such as prostate brachytherapy, we are developing an interactive simulation of needle insertion and radioactive seed implantation in soft tissues. We describe a new 2D dynamic FEM model based on a reduced set of scalar parameters such as needle friction, sharpness, and velocity, where the mesh is updated to maintain element boundaries along the needle shaft and the effects of needle tip and frictional forces are simulated. The computational complexity of our model grows linearly with the number of elements in the mesh and achieves 24 frames per second for 1250 triangular elements on a 750 MHz PC. We use the simulator to characterize the sensitivity of seed placement error to physician-controlled and biological parameters. Results indicate that seed placement error is highly sensitive to physician-controlled parameters such as needle position, sharpness, and friction, and less sensitive to patient-specific parameters such as tissue stiffness and compressibility.


Medical Physics | 1999

Miniature scintillating detector for small field radiation therapy

D. Létourneau; Jean Pouliot; R. Roy

In planning stereotactic radiosurgery treatments, depth dose curves, profiles, and dose rate of treatment beams are difficult to obtain with conventional detectors because of loss of lateral electronic equilibrium and volume averaging. A scintillating detector with high spatial resolution and good reliability has been developed to overcome this problem. The miniature dosimeter consists of two identical radiation-resistant 10 m long silica optical fibers, each connected to an independent silicon photodiode. A small cylindrical polystyrene scintillator (3.9 mm3) is optically glued to the detection fiber. The light seen by the photodiode connected to this fiber arises from fluorescence of the scintillator and from the Cerenkov effect produced in silica. The reference signal produced by the fiber without scintillator is used to subtract the Cerenkov light contribution from the raw detector response. The sensitive volume of the scintillating detector is nearly water-equivalent and thus minimizes dose distribution perturbation in water. The miniature dosimeter has a spatial resolution comparable to the film-densitometer system. Profiles of 1 cm diam, 6 MV photon beam measured with both systems show very similar shapes. Furthermore, the use of photodiodes instead of photomultiplier tubes gives a better stability response and offers the possibility to perform absolute dosimetry.


International Journal of Radiation Oncology Biology Physics | 1996

Optimization of permanent 125I prostate implants using fast simulated annealing

Jean Pouliot; D Tremblay; Jean Roy; Santo Filice

PURPOSE Treatment planning of ultrasound-guided transperineal 125I permanent prostatic implants is a time-consuming task, due to the large number of seeds used and the very large number of possible source arrangements within the target volume. The goal of this work is to develop an algorithm based on fast simulated annealing allowing consistent and automatic dose distribution optimization in permanent 125I prostatic implants. METHODS AND MATERIALS Fast simulated annealing is used to optimize the dose distribution by finding the best seed distribution through the minimization of a cost function. The cost function includes constraints on the dose at the periphery of the planned target volume and on the dose uniformity within this volume. Adjustment between peripheral dose and the dose uniformity can be achieved by varying the weight factor in the cost function. RESULTS Fast simulated annealing algorithm finds very good seed distributions within 20,000 iterations. The computer time needed for the optimization of a typical permanent implant involving 60 seeds and 14 needles is approximately 15 min. An additional 5 min are necessary for isodose distribution computations and miscellaneous outputs. CONCLUSION The use of fast simulated annealing allows for an efficient and rapid optimization of dose distribution. This algorithm is now routinely used at our institution in the clinical planning of 125I permanent transperineal prostate implants for early stage prostatic carcinoma.

Collaboration


Dive into the Jean Pouliot's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

I-Chow Hsu

University of California

View shared research outputs
Top Co-Authors

Avatar

J Chen

University of California

View shared research outputs
Top Co-Authors

Avatar

M Aubin

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J Aubry

University of California

View shared research outputs
Top Co-Authors

Avatar

N Kirby

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge