Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jean-Raymond Teyssier is active.

Publication


Featured researches published by Jean-Raymond Teyssier.


Journal of Medical Genetics | 2005

Clinical, molecular, and genotype–phenotype correlation studies from 25 cases of oral–facial–digital syndrome type 1: a French and Belgian collaborative study

Christel Thauvin-Robinet; M Cossée; Valérie Cormier-Daire; L. Van Maldergem; Annick Toutain; Y Alembik; Eric Bieth; Valérie Layet; P. Parent; Albert David; Alice Goldenberg; Geert Mortier; Delphine Héron; Paul Sagot; A M Bouvier; Frédéric Huet; V Cusin; Anne Donzel; D Devys; Jean-Raymond Teyssier; L. Faivre

Oral–facial–digital syndrome type 1 (OFD1) is characterised by an X linked dominant mode of inheritance with lethality in males. Clinical features include facial dysmorphism with oral, tooth, and distal abnormalities, polycystic kidney disease, and central nervous system malformations. Large interfamilial and intrafamilial clinical variability has been widely reported, and 18 distinct mutations have been previously reported within OFD1. A French and Belgian collaborative study collected 25 cases from 16 families. OFD1 was analysed using direct sequencing and phenotype–genotype correlation was performed using χ2 test. X inactivation studies were performed on blood lymphocytes. In 11 families, 11 novel mutations, including nine frameshift, one nonsense, and one missense mutation were identified, which spanned nine different exons. A combination of our results with previously reported cases showed that the majority of mutations (65.5%) was located in exons 3, 8, 9, 13, and 16. There was phenotype–genotype correlation between (a) polycystic kidney disease and splice mutations; (b) mental retardation and mutations located in exons 3, 8, 9, 13, and 16; and (c) tooth abnormalities and mutations located in coiled coil domains. Comparing the phenotype of the families with a pathogenic mutation to families with absence of OFD1 mutation, polycystic kidneys and short stature were significantly more frequent in the group with no OFD1 mutation, whereas lingual hamartomas were significantly more frequent in the group with OFD1 mutation. Finally, an X inactivation study showed non-random X inactivation in a third of the samples. Differential X inactivation between mothers and daughters in two families with high intrafamilial variability was of particular interest. Slight phenotype–genotype correlations were established, and X inactivation study showed that skewed X inactivation could be partially involved in the pathogenesis of intrafamilial clinical variability.


Journal of Cardiovascular Pharmacology | 1999

Antioxidative properties of pyruvate and protection of the ischemic rat heart during cardioplegia.

Petr Dobšák; Carol Courderot-Masuyer; Marianne Zeller; Catherine Vergely; Aline Laubriet; Mahfoud Assem; J.C. Eicher; Jean-Raymond Teyssier; Jean-Eric Wolf; Luc Rochette

Formation of oxygen free radicals during heart transplantation seems to be related to the alterations occurring during ischemia and reperfusion and could explain the short preservation time of donor hearts. The aim of our study was (a) to analyze the protective effects of pyruvate during cold cardioplegia and ischemia/reperfusion sequence, and (b) to investigate in vitro the radical scavenging properties of this compound. After 30 min of perfusion, isolated working rat hearts were arrested by cardioplegic solution, stored 4 h in B21 solutions at 4 degrees C, and reperfused with Krebs-Henseleit buffer for 45 min. Pyruvate (2 mM) was added to Krebs-Henseleit, cardioplegic, and storage solutions, and functional parameters were recorded throughout the experiments. In a second part, control hearts and hearts treated with pyruvate were cannulated via the aorta and perfused for 30 min by the Langendorff method, arrested by cardioplegic solution, stored 4 h in B21 solutions at 4 degrees C, and reperfused for 45 min by the Langendorff method. Malonedialdehyde and alpha-tocopherol levels were determined on heart homogenate. In situ detection of apoptotic cells also was performed on tissue samples (left ventricle) at the end of the ischemia/reperfusion sequence. To demonstrate in vitro the antioxidant effects of pyruvate, we monitored (a) its hydroxyl radical scavenging properties by using electron paramagnetic resonance (EPR) spectroscopy, and (b) the decrease of fluorescence of allophycocyanin, in the presence of a Fenton system (H2O2/Cu2+). Ischemia for 4 h, followed by myocardial reperfusion, resulted in substantially reduced mechanical function. Hearts subjected to this ischemia and pretreated with pyruvate showed a significant improvement in the function recovery. After the ischemia/reperfusion protocol, no significant decrease of malonedialdehyde levels was shown on hearts treated with pyruvate. However, alpha-tocopherol levels were higher in the pyruvate group compared with the control group. At the end of the reperfusion period, levels of apoptotic cells were significantly lower in hearts treated with pyruvate compared with control hearts. EPR studies showed that pyruvate was an efficient hydroxyl scavenger, with a median inhibitory concentration (IC50) of 8 mM. The allophycocyanin assay also showed a dose-dependent effect of pyruvate against hydroxyl radicals. In conclusion, these findings showed that pyruvate could prevent reperfusion injuries in the isolated heart, probably by its antioxidative properties. The application of pyruvate may contribute to the preservation of hearts for organ transplantation.


Archives of Cardiovascular Diseases | 2010

Telomere length and cardiovascular disease

Marianne Zeller; Julie Lorin; Jean-Raymond Teyssier; Yves Cottin; Luc Rochette; Catherine Vergely

Telomeres are structures composed of deoxyribonucleic acid repeats that protect the end of chromosomes, but shorten with each cell division. They have been the subject of many studies, particularly in the field of oncology, and more recently their role in the onset, development and prognosis of cardiovascular disease has generated considerable interest. It has already been shown that these structures may deteriorate at the beginning of the atherosclerotic process, in the onset and development of arterial hypertension or during myocardial infarction, in which their length may be a predictor of outcome. As telomere length by its nature is a marker of cell senescence, it is of particular interest when studying the lifespan and fate of endothelial cells and cardiomyocytes, especially so because telomere length seems to be regulated by various factors notably certain cardiovascular risk factors, such as smoking, sex and obesity that are associated with high levels of oxidative stress. To gain insights into the links between telomere length and cardiovascular disease, and to assess the usefulness of telomere length as a new marker of cardiovascular risk, it seems essential to review the considerable amount of data published recently on the subject.


Atherosclerosis | 2011

Circulating leukocyte telomere length and oxidative stress: A new target for statin therapy

Jean-Raymond Teyssier; Catherine Vergely; Julie Lorin; Michel Farnier; Anne Donzel; Pierre Sicard; Juliane Berchoud; Anne-Cécile Lagrost; Claude Touzery; Sylviane Ragot; Yves Cottin; Luc Rochette; Marianne Zeller

OBJECTIVES We investigated the relationship between prior statin therapy and leukocyte telomere length (LTL), as well as their interaction with potential new biomarkers of oxidative deoxyribonucleic acid (DNA) lesions and reactive oxygen species-induced inflammation. METHODS AND RESULTS From patients admitted for an acute myocardial infarction, LTL was assessed by quantitative polymerase chain reaction (Q-PCR), and leukocyte Finkel-Biskis-Jinkins osteosarcoma (FOS) and 8-oxoguanine DNA glycosylase (OGG1) messenger ribonucleic acid (mRNA) levels were measured by retrotranscription Q-PCR. Patients under prior chronic statin therapy were compared with patients without statin therapy. Although patients on statin therapy were older, their mean LTL was longer than patients not under statin therapy (1.29 ± 0.11 vs. 1.25 ± 0.11 T/S ratio, p = 0.008). In contrast, FOS and OGG1 mRNA levels were similar for the 2 groups. LTL decreased with increasing age, FOS, and OGG1 mRNA levels. Statin therapy remained associated with longer LTL, even after adjustment for confounding factors (p = 0.001), and in younger patients (≤ 64 y). Even in groups matched for propensity scores for statin use, LTL was markedly longer in patients under statin therapy. CONCLUSIONS Our observational study showed that statin therapy was associated with longer LTL. These data bring to light opportunities to identify new targets for early primary preventive treatment strategies. Moreover, our study raised FOS and OGG1 as new relevant biomarkers of LTL.


PLOS ONE | 2012

Up-Regulation of leucocytes Genes Implicated in Telomere Dysfunction and Cellular Senescence Correlates with Depression and Anxiety Severity Scores

Jean-Raymond Teyssier; Jean-Christophe Chauvet-Gelinier; Sylviane Ragot; Bernard Bonin

Background Major depressive disorder (MDD) is frequently associated with chronic medical illness responsible of increased disability and mortality. Inflammation and oxidative stress are considered to be the major mediators of the allostatic load, and has been shown to correlate with telomere erosion in the leucocytes of MDD patients, leading to the model of accelerated aging. However, the significance of telomere length as an exclusive biomarker of aging has been questioned on both methodological and biological grounds. Furthermore, telomeres significantly shorten only in patients with long lasting MDD. Sensitive and dynamic functional biomarkers of aging would be clinically useful to evaluate the somatic impact of MDD. Methodology To address this issue we have measured in the blood leucocytes of MDD patients (N = 17) and controls (N = 16) the expression of two genes identified as robust biomarkers of human aging and telomere dysfunction: p16INK4a and STMN1. We have also quantified the transcripts of genes involved in the repair of oxidative DNA damage at telomeres (OGG1), telomere regulation and elongation (TERT), and in the response to biopsychological stress (FOS and DUSP1). Results The OGG1, p16INK4a, and STMN1 gene were significantly up-regulated (25 to 100%) in the leucocytes of MDD patients. Expression of p16INK4a and STMN1 was directly correlated with anxiety scores in the depression group, and that of p16INK4a, STMN and TERT with the depression and anxiety scores in the combined sample (MDD plus controls). Furthermore, we identified a unique correlative pattern of gene expression in the leucocytes of MDD subjects. Conclusions Expression of p16INK4 and STMN1 is a promising biomarker for future epidemiological assessment of the somatic impact of depressive and anxious symptoms, at both clinical and subclinical level in both depressive patients and general population.


Psychiatry Research-neuroimaging | 2011

Expression of oxidative stress-response genes is not activated in the prefrontal cortex of patients with depressive disorder

Jean-Raymond Teyssier; Sylviane Ragot; Jean-Christophe Chauvet-Gelinier; Benoit Trojak; Bernard Bonin

To test the hypothesis that the oxidative stress consistently detected in the peripheral blood of patients with depressive disorder impacts on the functionally relevant brain region, the expression level of nine major genes of the stress response and repair systems has been quantified in the prefrontal cortex of 24 depressive and 12 control subjects. These genes were: superoxide dismutase (SOD1), SOD2, catalase (CAT), gluthatione peroxidase 1 (GPx1), 8-oxoguanine DNA glycosylase (OGG1), nei-like 1 (NEIL1), methionine sulphoxide reductase A (MSRA), telomere repeat-binding factor 2 (TERF2) and C-FOS. Telomere length (a maker of chronic exposure to oxidative stress) has been measured in the DNA of the occipital cortex. No significant difference has been found between the compared groups. It must be concluded that the pathogenic role of the oxidative stress in the cerebral mechanism of depression cannot be inferred from the alteration of peripheral parameters.


Biochimica et Biophysica Acta | 2002

Stage-dependent activation of cell cycle and apoptosis mechanisms in the right ventricle by pressure overload

Aline Ecarnot-Laubriet; Mahfoud Assem; F. Poirson-Bichat; Maryvonne Moisant; Colette Bernard; Sandrine Lecour; Eric Solary; Luc Rochette; Jean-Raymond Teyssier

The molecular basis of the intrinsic vulnerability of the compliant right ventricle to chronic pressure overload is poorly understood. Extensive apoptosis, possibly coupled with aberrant cell cycle reentry, in response to unrestrained biomechanical stress may account for this phenotypic flaw. To address this issue we have studied changes in expression of the cell cycle and apoptosis regulators in the right ventricle following induction of pulmonary hypertension in the rat by injection of monocrotaline. Hypertrophy, apoptosis and cell cycle events, as well as expression of their regulator genes were documented during a period of 31 days. The hypertrophy index reached 127% at day 31. At the early stage both apoptosis and cell proliferation pathways were coincidentally activated. The level of cyclin A and E transcripts steadily increased, the labeling index was 4.8% at day 31, and expression of the caspase-3 gene peaked at day 14. Until day 21 execution of apoptosis was prevented, probably by a high level of Bcl-2. At this time point Bcl-2 collapsed, cyclin D1 was upregulated, the differentiation gatekeeper p27Kip1 was downregulated, pro-caspase-3 was activated and extensive apoptosis developed. These results indicate that the right ventricle is especially vulnerable to apoptotic pressure-dependent stimuli, and that the cell cycle and apoptosis pathways were co-activated in this experimental model.


Human Mutation | 2009

Genomic deletions of OFD1 account for 23% of oral-facial-digital type 1 syndrome after negative DNA sequencing.

Christel Thauvin-Robinet; Brunella Franco; Pascale Saugier-Veber; Bernard Aral; Nadège Gigot; Anne Donzel; Lionel Van Maldergem; Eric Bieth; Valérie Layet; Michèle Mathieu; Ahmad S. Teebi; James Lespinasse; Patrick Callier; Francine Mugneret; Alice Masurel-Paulet; Elodie Gautier; Frédéric Huet; Jean-Raymond Teyssier; Mario Tosi; Thierry Frebourg; Laurence Faivre

Oral‐facial‐digital type I syndrome (OFDI) is characterised by an X‐linked dominant mode of inheritance with lethality in males. Clinical features include facial dysmorphism with oral, dental and distal abnormalities, polycystic kidney disease and central nervous system malformations. Considerable allelic heterogeneity has been reported within the OFD1 gene, but DNA bi‐directional sequencing of the exons and intron‐exon boundaries of the OFD1 gene remains negative in more than 20% of cases. We hypothesized that genomic rearrangements could account for the majority of the remaining undiagnosed cases. Thus, we took advantage of two independent available series of patients with OFDI syndrome and negative DNA bi‐directional sequencing of the exons and intron‐exon boundaries of the OFD1 gene from two different European labs: 13/36 cases from the French lab; 13/95 from the Italian lab. All patients were screened by a semiquantitative fluorescent multiplex method (QFMPSF) and relative quantification by real‐time PCR (qPCR). Six OFD1 genomic deletions (exon 5, exons 1–8, exons 1–14, exons 10–11, exons 13–23 and exon 17) were identified, accounting for 5% of OFDI patients and for 23% of patients with negative mutation screening by DNA sequencing. The association of DNA direct sequencing, QFMPSF and qPCR detects OFD1 alteration in up to 85% of patients with a phenotype suggestive of OFDI syndrome. Given the average percentage of large genomic rearrangements (5%), we suggest that dosage methods should be performed in addition to DNA direct sequencing analysis to exclude the involvement of the OFD1 transcript when there are genetic counselling issues.


Brain Behavior and Immunity | 2014

Leukocyte telomere length in mastocytosis: Correlations with depression and perceived stress

Sophie Georgin-Lavialle; Daniela Silva Moura; Julie Bruneau; Jean-Christophe Chauvet-Gelinier; Gandhi Damaj; Erinn Soucie; Stéphane Barete; Anne-Laure Gacon; Catherine Grandpeix-Guyodo; Felipe Suarez; Jean-Marie Launay; I. Durieu; Aurélie Esparcieux; Isabelle Guichard; Agnès Sparsa; Franck E. Nicolini; Christian De Gennes; Benoit Trojak; Emmanuel Haffen; Pierre Vandel; O. Lortholary; Patrice Dubreuil; Bernard Bonin; Serge Sultan; Jean-Raymond Teyssier; Olivier Hermine

BACKGROUND Mastocytosisis a rare disease associated with chronic symptoms related to mast cell mediator release. Patients with mastocytosis display high level of negative emotionality such as depression and stress sensibility. Brain mast cells are mainly localized in the diencephalon, which is linked to emotion regulatory systems. Negative emotionality has been shown to be associated with telomere shortening. Taken together these observations led us to hypothesize that mast cells activity could be involved in both negative emotionality and telomere shortening in mastocytosis. OBJECTIVE To demonstrate a possible relationship between negative emotionality in mastocytosis and leukocytes telomere length. METHODS Leukocyte telomere length and telomerase activity were measured among mastocytosis patients and were correlated with perceived stress and depression assessed by the Beck Depression Inventory revised and the Perceived Stress Scale. RESULTS Mild-severe depression scores were frequent (78.9%) as well as high perceived stress (42.11%). Telomere length was correlated to perceived stress (r=0.77; p=0.0001) but not to depression in our population. Patients displaying Wild-type KIT significantly presented higher perceived stress levels. Patients with the D816VC KIT mutation who had high perceived stress scores displayed significantly shorter telomere but not if they had high depression scores. CONCLUSION These findings suggest that high perceived stress in mastocytosis could accelerate the rate of leukocytes telomere shortening. Since mastocytosis is, by definition, a mast cell mediated disease; these cells could be involved in this phenomenon. Mechanistic causal relationships between these parameters need to be investigated.


Journal of Affective Disorders | 2011

Activation of a ΔFOSB dependent gene expression pattern in the dorsolateral prefrontal cortex of patients with major depressive disorder

Jean-Raymond Teyssier; Sylviane Ragot; Jean-Christophe Chauvet-Gelinier; Benoit Trojak; Bernard Bonin

BACKGROUND A ΔFOSB mediated transcriptional response in the nucleus accumbens (NAc) is induced by chronic social stress in rodent and a 50% down-regulation of ΔFOSB has been also reported in the NAc of eight depressed subjects. To evaluate the role of ΔFOSB in the prefrontal cortex which is critically involved in negative cognitive bias associated with major depressive disorder (MDD) we have quantified the mRNA levels of ΔFOSB and of five of its major target genes in the Brodmann area 46 from 24 patients with MDD (11 with psychotic symptoms) and 12 controls. METHOD Expression of the six genes has been quantified by a real-time quantitative PCR method: ΔFOSB, GRIA2 (encoding the GluR2 subunit of the AMPA receptor), SPARCL1 (encoding hevin), SG3 (encoding the secretogranin III), PCP4 (encoding the Purkinje cell protein 4), ATP6V0C (encoding a subunit of the lysosomal ATPase). RESULTS Expression of ΔFOSB and GRIA2 was significantly up-regulated (≈ 1.60) in the BA 46 of MDD patients. Overexpression of SCG3 and PCP4 was restricted to psychotic subjects. The mRNA levels of GRIA2, SCG3 and PCP4 were strongly correlated in the depressed group. LIMITATIONS All the patients were treated by antidepressants and the number of subjects in each subgroup was rather small. CONCLUSIONS Induction of a ΔFOSB mediated transcriptional pattern in the prefrontal cortex is opposite to the down-regulation observed in the NAc. The major consequence might be a shift in the excitability of the glutamatergic synapses which depends on GluR2 (high in the NAc and low in the BA 46).

Collaboration


Dive into the Jean-Raymond Teyssier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne Donzel

University of Burgundy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julie Lorin

University of Burgundy

View shared research outputs
Researchain Logo
Decentralizing Knowledge