Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jean-Robert Brisson is active.

Publication


Featured researches published by Jean-Robert Brisson.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Host-derived sialic acid is incorporated into Haemophilus influenzae lipopolysaccharide and is a major virulence factor in experimental otitis media

Valérie Bouchet; Derek W. Hood; Jianjun Li; Jean-Robert Brisson; Gaynor A. Randle; Adele Martin; Zhong Li; Richard Goldstein; Elke K. H. Schweda; Stephen I. Pelton; James C. Richards; E. Richard Moxon

Otitis media, a common and often recurrent bacterial infection of childhood, is a major reason for physician visits and the prescription of antimicrobials. Haemophilus influenzae is the cause of ≈20% of episodes of bacterial otitis media, but most strains lack the capsule, a factor known to play a critical role in the virulence of strains causing invasive H. influenzae disease. Here we show that in capsule-deficient (nontypeable) strains, sialic acid, a terminal residue of the core sugars of H. influenzae lipopolysaccharide (LPS), is a critical virulence factor in the pathogenesis of experimental otitis media in chinchillas. We used five epidemiologically distinct H. influenzae isolates, representative of the genetic diversity of strains causing otitis media, to inoculate the middle ear of chinchillas. All animals developed acute bacterial otitis media that persisted for up to 3 wk, whereas isogenic sialic acid-deficient mutants (disrupted sialyltransferase or CMP-acetylneuraminic acid synthetase genes) were profoundly attenuated. MS analysis indicated that WT bacteria used to inoculate animals lacked any sialylated LPS glycoforms. In contrast, LPS of ex vivo organisms recovered from chinchilla middle ear exudates was sialylated. We conclude that sialylated LPS glycoforms play a key role in pathogenicity of nontypeable H. influenzae and depend on scavenging the essential precursors from the host during the infection.


Molecular Microbiology | 2004

Analysis of Campylobacter jejuni capsular loci reveals multiple mechanisms for the generation of structural diversity and the ability to form complex heptoses

Andrey V. Karlyshev; Olivia G. Champion; Carol Churcher; Jean-Robert Brisson; Harold G. Jarrell; Michael Gilbert; Denis Brochu; Frank St. Michael; Jianjun Li; Warren W. Wakarchuk; Ian Goodhead; Mandy Sanders; Kim Stevens; Brian R. White; Julian Parkhill; Brendan W. Wren; Christine M. Szymanski

We recently demonstrated that Campylobacter jejuni produces a capsular polysaccharide (CPS) that is the major antigenic component of the classical Penner serotyping system distinguishing Campylobacter into >60 groups. Although the wide variety of C. jejuni serotypes are suggestive of structural differences in CPS, the genetic mechanisms of such differences are unknown. In this study we sequenced biosynthetic cps regions, ranging in size from 15 to 34 kb, from selected C. jejuni strains of HS:1, HS:19, HS:23, HS:36, HS:23/36 and HS:41 serotypes. Comparison of the determined cps sequences of the HS:1, HS:19 and HS:41 strains with the sequenced strain, NCTC11168 (HS:2), provides evidence for multiple mechanisms of structural variation including exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and contingency gene variation. In contrast, the HS:23, HS:36 and HS:23/36 cps sequences were highly conserved. We report the first detailed structural analysis of 81‐176 (HS:23/36) and G1 (HS:1) and refine the previous structural interpretations of the HS:19, HS:23, HS:36 and HS:41 serostrains. For the first time, we demonstrate the commonality and function of a second heptose biosynthetic pathway for Campylobacter CPS independent of the pathway for lipooligosaccharide (LOS) biosynthesis and identify a novel heptosyltransferase utilized by this alternate pathway. Furthermore, we show the retention of two functional heptose isomerases in Campylobacter and the sharing of a phosphatase for both LOS and CPS heptose biosynthesis.


Journal of Biological Chemistry | 2006

Functional characterization of dehydratase/aminotransferase pairs from Helicobacter and Campylobacter: enzymes distinguishing the pseudaminic acid and bacillosamine biosynthetic pathways.

Ian C. Schoenhofen; David J. McNally; Evgeny Vinogradov; Dennis M. Whitfield; N. Martin Young; Scott Dick; Warren W. Wakarchuk; Jean-Robert Brisson; Susan M. Logan

Helicobacter pylori and Campylobacter jejuni have been shown to modify their flagellins with pseudaminic acid (Pse), via O-linkage, while C. jejuni also possesses a general protein glycosylation pathway (Pgl) responsible for the N-linked modification of at least 30 proteins with a heptasaccharide containing 2,4-diacetamido-2,4,6-trideoxy-α-d-glucopyranose, a derivative of bacillosamine. To further define the Pse and bacillosamine biosynthetic pathways, we have undertaken functional characterization of UDP-α-d-GlcNAc modifying dehydratase/aminotransferase pairs, in particular the H. pylori and C. jejuni flagellar pairs HP0840/HP0366 and Cj1293/Cj1294, as well as the C. jejuni Pgl pair Cj1120c/Cj1121c using His6-tagged purified derivatives. The metabolites produced by these enzymes were identified using NMR spectroscopy at 500 and/or 600 MHz with a cryogenically cooled probe for optimal sensitivity. The metabolites of Cj1293 (PseB) and HP0840 (FlaA1) were found to be labile and could only be characterized by NMR analysis directly in aqueous reaction buffer. The Cj1293 and HP0840 enzymes exhibited C6 dehydratase as well as a newly identified C5 epimerase activity that resulted in the production of both UDP-2-acetamido-2,6-dideoxy-β-l-arabino-4-hexulose and UDP-2-acetamido-2,6-dideoxy-α-d-xylo-4-hexulose. In contrast, the Pgl dehydratase Cj1120c (PglF) was found to possess only C6 dehydratase activity generating UDP-2-acetamido-2,6-dideoxy-α-d-xylo-4-hexulose. Substrate-specificity studies demonstrated that the flagellar aminotransferases HP0366 and Cj1294 utilize only UDP-2-acetamido-2,6-dideoxy-β-l-arabino-4-hexulose as substrate producing UDP-4-amino-4,6-dideoxy-β-l-AltNAc, a precursor in the Pse biosynthetic pathway. In contrast, the Pgl aminotransferase Cj1121c (PglE) utilizes only UDP-2-acetamido-2,6-dideoxy-α-d-xylo-4-hexulose producing UDP-4-amino-4,6-dideoxy-α-d-GlcNAc (UDP-2-acetamido-4-amino-2,4,6-trideoxy-α-d-glucopyranose), a precursor used in the production of the Pgl glycan component 2,4-diacetamido-2,4,6-trideoxy-α-d-glucopyranose.


Molecular Microbiology | 2001

Identification of a lipopolysaccharide alpha-2,3-sialyltransferase from Haemophilus influenzae.

Derek W. Hood; Andrew D. Cox; Michel Gilbert; Katherine Makepeace; Shannon Walsh; Mary E. Deadman; Alison J. Cody; Adele Martin; Martin Månsson; Elke K.H. Schweda; Jean-Robert Brisson; James C. Richards; E. Richard Moxon; Warren W. Wakarchuk

We have identified a gene for the addition of N‐acetylneuraminic acid (Neu5Ac) in an α‐2,3‐linkage to a lactosyl acceptor moiety of the lipopolysaccharide (LPS) of the human pathogen Haemophilus influenzae. The gene is one that was identified previously as a phase‐variable gene known as lic3A. Extracts of H. influenzae, as well as recombinant Escherichia coli strains producing Lic3A, demonstrate sialyltransferase activity in assays using synthetic fluorescent acceptors with a terminal galactosyl, lactosyl or N‐acetyl‐lactosaminyl moiety. In the RM118 strain of H. influenzae, Lic3A activity is modulated by the action of another phase‐variable glycosyltransferase, LgtC, which competes for the same lactosyl acceptor moiety. Structural analysis of LPS from a RM118:lgtC mutant and the non‐typeable strain 486 using mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy confirmed that the major sialylated species has a sialyl‐α‐(2–3)‐lactosyl extension off the distal heptose. This sialylated glycoform was absent in strains containing a lic3A gene disruption. Low amounts of sialylated higher molecular mass glycoforms were present in RM118:lgtC lic3A, indicating the presence of a second sialyltransferase. Lic3A mutants of H. influenzae strains show reduced resistance to the killing effects of normal human serum. Lic3A, encoding an α‐2,3‐sialyltransferase activity, is the first reported phase‐variable sialyltransferase gene.


Serodiagnosis and Immunotherapy in Infectious Disease | 1990

Structural characteristics of the antigenic capsular polysaccharides and lipopolysaccharides involved in the serological classification of Actinobacillus (Haemophilus) pleuropneumoniae strains

Malcolm B. Perry; Eleonora Altman; Jean-Robert Brisson; Linda M. Beynon; James C. Richards

Abstract The detailed structures of the specific capsular polysaccharides and cellular lipopolysaccharides of the 12 known serotypes of Actinobacillus (Haemophilus) pleuropneumoniae are presented and their serological relationships are discussed together with their significance in the control of swine pleuropneumonia.


Journal of Biological Chemistry | 1997

UDP-galactofuranose precursor required for formation of the lipopolysaccharide O antigen of Klebsiella pneumoniae serotype O1 is synthesized by the product of the rfbDKPO1 gene.

Reinhard Köplin; Jean-Robert Brisson; Chris Whitfield

The O-side-chain polysaccharide in the lipopolysaccharide of Klebsiella pneumoniae O1 is based on a backbone structure of repeat units of [→3)-β-D-Galf-(1→3)-α-D-Galp-(1→]; this structure is termed D-galactan I. The rfb (O-antigen biosynthesis) gene cluster directs the synthesis of D-galactan I and consists of six genes termed rfbA-FKPO1. In this paper we show that rfbDKPO1 encodes a UDP-galactopyranose mutase (NAD(P)H-requiring) (EC 5.4.99.9), which forms uridine 5′-(trihydrogen diphosphate) P′-α-D-galactofuranosyl ester (UDP-Galf), the biosynthetic precursor of galactofuranosyl residues. The deduced amino acid sequence of rfbDKPO1 shows 85% and 37.5% identity to the rfbDKPO8 gene of K. pneumoniae serotype O8 and the glf gene of Escherichia coli, respectively. The molecular mass of the purified RfbDKPO1 enzyme is 45 kDa as determined by SDS-polyacrylamide gel electrophoresis, while gel filtration revealed a molecular mass of 92 kDa, suggesting a dimeric structure for the native protein. The rfbDKPO1 gene product interconverts uridine 5′-(trihydrogen diphosphate) P′-α-D-galactopyranosyl ester (UDP-Galp) and UDP-Galf Unlike Glf, RfbDKPO1 showed a requirement for NADH or NADPH, which could not be replaced by NAD or NADP. RfbDKPO1 was used to synthesize milligram quantities of UDP-Galf, allowing this compound to be purified and fully characterized in an intact form for the first time. The structure of UDP-Galf was proven by NMR spectroscopy.


Carbohydrate Research | 1993

A Monte Carlo method for conformational analysis of saccharides.

Thomas Peters; Bernd Meyer; Rainer Stuike-Prill; Ray L. Somorjai; Jean-Robert Brisson

A Metropolis Monte Carlo (MMC) algorithm was applied to explore conformational spaces spanned by the exocyclic dihedral angles of four disaccharides alpha-D-Man(1-->3)-alpha-D-Man(1-->O)Me (1), alpha-D-Man(1-->2)-alpha-D-Man(1-->O)Me (2), methyl beta-cellobioside (3), and methyl beta-maltoside (4). The simulation method uses the HSEA force field and randomly samples the conformational space with an automatic preference for low-energy states. In comparison to a systematic grid search, MMC offers a much more convenient and efficient protocol for the computation of ensemble average values of experimentally accessible NMR parameters such as NOE effects or 3J coupling constants. Energy barriers of a few kcal/mol were found to be surmounted easily when running the simulations with the temperature parameter set at room temperature, whereas passing significantly higher barriers required elevated temperature parameters. Ensemble average NOE values were calculated using the MMC technique and a conventional systematic grid search showing that the MMC method adequately samples the conformational spaces of 1-4. Theoretical NOEs derived for global or local minimum conformations are different from ensemble average values, and it is shown that averaged NOEs agree significantly better with experimental data. Ensemble average NOEs for 1 derived from MMC/HSEA, and previously reported MM2CARB and AMBER calculations all showed good agreement with experimental data, with MMC/HSEA giving the closest fit.


Journal of Biological Chemistry | 2006

Functional Characterization of the Flagellar Glycosylation Locus in Campylobacter jejuni 81–176 Using a Focused Metabolomics Approach

David J. McNally; Joseph P. M. Hui; Annie Aubry; Kenneth K. K. Mui; Patricia Guerry; Jean-Robert Brisson; Susan M. Logan; Evelyn C. Soo

Bacterial genome sequencing has provided a wealth of genetic data. However, the definitive functional characterization of hypothetical open reading frames and novel biosynthetic genes remains challenging. This is particularly true for genes involved in protein glycosylation because the isolation of their glycan moieties is often problematic. We have developed a focused metabolomics approach to define the function of flagellin glycosylation genes in Campylobacter jejuni 81–176. A capillary electrophoresis-electrospray mass spectrometry and precursor ion scanning method was used to examine cell lysates of C. jejuni 81–176 for sugar nucleotides. Novel nucleotide-activated intermediates of the pseudaminic acid (Pse5NAc7NAc) pathway and its acetamidino derivative (PseAm) were found to accumulate within select isogenic mutants, and use of a hydrophilic interaction liquid chromatography-mass spectrometry method permitted large scale purifications of the intermediates. NMR with cryo probe (cold probe) technology was utilized to complete the structural characterization of microgram quantities of CMP-5-acetamido-7-acetamidino-3,5,7,9-tetradeoxy-l-glycero-α-l-manno-nonulosonic acid (CMP-Pse5NAc7Am), which is the first report of Pse modified at C7 with an acetamidino group in Campylobacter, and UDP-2,4-diacetamido-2,4,6-trideoxy-α-d-glucopyranose, which is a bacillosamine derivative found in the N-linked proteinglycan. Using this focused metabolomics approach, pseB, pseC, pseF, pseI, and for the first time pseA, pseG, and pseH were found to be directly involved in either the biosynthesis of CMP-Pse5NAc7NAc or CMP-Pse5NAc7Am. In contrast, it was shown that pseD, pseE, Cj1314c, Cj1315c, Cjb1301, Cj1334, Cj1341c, and Cj1342c have no role in the CMP-Pse5NAc7NAc or CMP-Pse5NAc7Am pathways. These results demonstrate the usefulness of this approach for targeting compounds within the bacterial metabolome to assign function to genes, identify metabolic intermediates, and elucidate novel biosynthetic pathways.


Journal of Biological Chemistry | 2007

Targeted metabolomics analysis of Campylobacter coli VC167 reveals legionaminic acid derivatives as novel flagellar glycans.

David J. McNally; Annie Aubry; Joseph P. M. Hui; Nam Huan Khieu; Dennis M. Whitfield; Cheryl P. Ewing; Patricia Guerry; Jean-Robert Brisson; Susan M. Logan; Evelyn C. Soo

Glycosylation of Campylobacter flagellin is required for the biogenesis of a functional flagella filament. Recently, we used a targeted metabolomics approach using mass spectrometry and NMR to identify changes in the metabolic profile of wild type and mutants in the flagellar glycosylation locus, characterize novel metabolites, and assign function to genes to define the pseudaminic acid biosynthetic pathway in Campylobacter jejuni 81-176 (McNally, D. J., Hui, J. P., Aubry, A. J., Mui, K. K., Guerry, P., Brisson, J. R., Logan, S. M., and Soo, E. C. (2006) J. Biol. Chem. 281, 18489-18498). In this study, we use a similar approach to further define the glycome and metabolomic complement of nucleotide-activated sugars in Campylobacter coli VC167. Herein we demonstrate that, in addition to CMP-pseudaminic acid, C. coli VC167 also produces two structurally distinct nucleotide-activated nonulosonate sugars that were observed as negative ions at m/z 637 and m/z 651 (CMP-315 and CMP-329). Hydrophilic interaction liquid chromatography-mass spectrometry yielded suitable amounts of the pure sugar nucleotides for NMR spectroscopy using a cold probe. Structural analysis in conjunction with molecular modeling identified the sugar moieties as acetamidino and N-methylacetimidoyl derivatives of legionaminic acid (Leg5Am7Ac and Leg5AmNMe7Ac). Targeted metabolomic analyses of isogenic mutants established a role for the ptmA-F genes and defined two new ptm genes in this locus as legionaminic acid biosynthetic enzymes. This is the first report of legionaminic acid in Campylobacter sp. and the first report of legionaminic acid derivatives as modifications on a protein.


Glycobiology | 2009

The CMP-legionaminic acid pathway in Campylobacter: Biosynthesis involving novel GDP-linked precursors

Ian C. Schoenhofen; Evgeny Vinogradov; Dennis M. Whitfield; Jean-Robert Brisson; Susan M. Logan

The sialic acid-like sugar 5,7-diacetamido-3,5,7,9-tetradeoxy-D-glycero-D-galacto-nonulosonic acid, or legion-aminic acid, is found as a virulence-associated cell-surface glycoconjugate in the Gram-negative bacteria Legionella pneumophila and Campylobacter coli. L. pneumophila serogroup 1 strains, causative agents of Legionnaires disease, contain an alpha2,4-linked homopolymer of legionaminic acid within their lipopolysaccharide O-chains, whereas the gastrointestinal pathogen C. coli modifies its flagellin with this monosaccharide via O-linkage. In this work, we have purified and biochemically characterized 11 candidate biosynthetic enzymes from Campylobacter jejuni, thereby fully reconstituting the biosynthesis of legionaminic acid and its CMP-activated form, starting from fructose-6-P. This pathway involves unique GDP-linked intermediates, likely providing a cellular mechanism for differentiating between this and similar UDP-linked pathways, such as UDP-2,4-diacetamido-bacillosamine biosynthesis involved in N-linked protein glycosylation. Importantly, these findings provide a facile method for efficient large-scale synthesis of legionaminic acid, and since legionaminic acid and sialic acid share the same D-glycero-D-galacto absolute configuration, this sugar may now be evaluated for its potential as a sialic acid mimic.

Collaboration


Dive into the Jean-Robert Brisson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eleonora Altman

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harold J. Jennings

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Jianjun Li

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nam Huan Khieu

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Susan M. Logan

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge