Jean Sathish
University of Liverpool
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jean Sathish.
Toxicological Sciences | 2009
Daniel J. Antoine; Dominic P. Williams; Anja Kipar; Rosalind E. Jenkins; Sophie Regan; Jean Sathish; Neil R. Kitteringham; B. Kevin Park
Drug-induced hepatotoxicity represents a major clinical problem and an impediment to new medicine development. Serum biomarkers hold the potential to provide information about pathways leading to cellular responses within inaccessible tissues, which can inform the medicinal chemist and the clinician with respect to safe drug design and use. Hepatocyte apoptosis, necrosis, and innate immune activation have been defined as features of the toxicological response associated with the hepatotoxin acetaminophen (APAP). Within this investigation, we have unambiguously identified and characterized by liquid chromatography-tandem mass spectrometry differing circulating molecular forms of high-mobility group box-1 protein (HMGB1) and keratin-18 (K18), which are linked to the mechanisms and pathological changes induced by APAP in the mouse. Hypoacetylated HMGB1 (necrosis indicator), caspase-cleaved K18 (apoptosis indicator), and full-length K18 (necrosis indicator) present in serum showed strong correlations with the histological time course of cell death and was more sensitive than alanine aminotransferase activity. We have further identified a hyperacetylated form of HMGB1 (inflammatory indicator) in serum, which indicated that hepatotoxicity was associated with an inflammatory response. The inhibition of APAP-induced apoptosis and K18 cleavage by the caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp(OMe) fluoromethyl ketone are associated with increased hepatic damage, by a shift to necrotic cell death only. These findings illustrate the initial verification of K18 and HMGB1 molecular forms as serum-based sensitive tools that provide insights into the cellular dynamics involved in APAP hepatotoxicity within an inaccessible tissue. Based on these findings, potential exists for the qualification and measurement of these proteins to further assist in vitro, in vivo, and clinical bridging in toxicological research.
Nature Reviews Drug Discovery | 2013
Jean Sathish; Swaminathan Sethu; Marie Christine Bielsky; Lolke de Haan; Neil French; Karthik Govindappa; James J. Green; C.E.M. Griffiths; Stephen T. Holgate; Davey L. Jones; Ian Kimber; Jonathan G. Moggs; Dean J. Naisbitt; Munir Pirmohamed; Gabriele Reichmann; Jennifer Sims; Meena Subramanyam; Marque D. Todd; Jan Willem van der Laan; Richard J. Weaver; B. Kevin Park
Immunomodulatory biologics, which render their therapeutic effects by modulating or harnessing immune responses, have proven their therapeutic utility in several complex conditions including cancer and autoimmune diseases. However, unwanted adverse reactions — including serious infections, malignancy, cytokine release syndrome, anaphylaxis and hypersensitivity as well as immunogenicity — pose a challenge to the development of new (and safer) immunomodulatory biologics. In this article, we assess the safety issues associated with immunomodulatory biologics and discuss the current approaches for predicting and mitigating adverse reactions associated with their use. We also outline how these approaches can inform the development of safer immunomodulatory biologics.
Pain | 2012
Xiechuan Weng; Trevor Smith; Jean Sathish; Laiche Djouhri
Summary This study shows that C‐nociceptors may play a more important role than Aδ‐nociceptors in sustaining persistent inflammatory pain and that Ih/HCN2 channels may be involved. Abstract Inflammatory pain hypersensitivity results partly from hyperexcitability of nociceptive (damage‐sensing) dorsal root ganglion (DRG) neurons innervating inflamed tissue. However, most of the evidence for this is derived from experiments using acute inflammatory states. Herein, we used several approaches to examine the impact of chronic or persistent inflammation on the excitability of nociceptive DRG neurons and on their expression of Ih and the underlying hyperpolarization‐activated cyclic nucleotide‐gated (HCN) channels, which regulate neuronal excitability. Using in vivo intracellular recordings of somatic action potentials from L4/L5 DRG neurons in normal rats and rats with hindlimb inflammation induced by complete Freund’s adjuvant (CFA), we demonstrate increased excitability of C‐ but not Aδ‐nociceptors, 5 to 7 days after CFA. This included an afterdischarge response to noxious pinch, which may contribute to inflammatory mechanohyperalgesia, and increased incidence of spontaneous activity (SA) and decreased electrical thresholds, which are likely to contribute to spontaneous pain and nociceptor sensitization, respectively. We also show, using voltage clamp in vivo, immunohistochemistry and behavioral assays that (1) the inflammation‐induced nociceptor hyperexcitability is associated, in C‐ but not Aδ‐nociceptors, with increases in the mean Ih amplitude/density and in the proportion of Ih expressing neurons, (2) increased proportion of small DRG neurons (mainly IB4‐negative) expressing HCN2 but not HCN1 or HCN3 channel protein, (3) increased HCN2‐ immunoreactivity in the spinal dorsal horn, and (4) attenuation of inflammatory mechanoallodynia with the selective Ih antagonist, ZD7288. Taken together, the findings suggest that C‐ but not Aδ‐nociceptors sustain chronic inflammatory pain and that Ih/HCN2 channels contribute to inflammation‐induced C‐nociceptor hyperexcitability.
British Journal of Pharmacology | 2009
Neill J. Liptrott; M. Penny; Patrick G. Bray; Jean Sathish; Saye Khoo; David Back; Andrew Owen
Background and purpose: The function of transporters in peripheral blood mononuclear cells (PBMC) has been characterized, but less is known about cytochrome P450 (CYP) enzyme function in these cells. Given that cytokines are dysregulated in many diseases, the purpose of this work was to assess the impact of cytokines on the expression of CYPs, transporters and chemokine receptors in PBMC.
Journal of Immunology | 2001
Jean Sathish; Kenneth G. Johnson; Kerensa J. Fuller; Frances Gertrude LeRoy; Linde Meyaard; Martin J. Sims; Reginald James Matthews
The intracellular Src homology 2 (SH2) domain-containing protein tyrosine phosphatase (SHP-1) is a negative regulator of cell signaling and contributes to the establishment of TCR signaling thresholds in both developing and mature T lymphocytes. Although there is much functional data implicating SHP-1 as a regulator of TCR signaling, the molecular basis for SHP-1 activation in T lymphocytes is poorly defined. A modification of the yeast two-hybrid system was employed to identify in T cells phosphotyrosine-containing proteins capable of binding the SH2 domains of SHP-1. From this yeast tri-hybrid screen, the p85β subunit of phosphatidylinositol 3-kinase and the immunoreceptor tyrosine-based inhibitory motif-containing receptors, leukocyte-associated Ig-like receptor-1 (LAIR-1) and programmed death-1 (PD-1), were identified. Coimmunoprecipitation studies demonstrated that the exclusive phosphotyrosine-containing protein associated with SHP-1 in Jurkat T cells under physiological conditions is LAIR-1. Significantly, this interaction is constitutive and was detected only in the membrane-enriched fraction of cell lysates. Ligand engagement of the SH2 domains of SHP-1 is a prerequisite to activation of the enzyme, and, consistent with an association with LAIR-1, SHP-1 was found to be constitutively active in unstimulated Jurkat T cells. Importantly, a constitutive interaction between LAIR-1 and SHP-1 was also detected in human primary T cells. These results illustrate the sustained recruitment and activation of SHP-1 at the plasma membrane of resting human T cells by an inhibitory receptor. We propose that this mechanism may exert a constitutive negative regulatory role upon T cell signaling.
Archivum Immunologiae Et Therapiae Experimentalis | 2012
Swaminathan Sethu; Karthik Govindappa; Mohammad Alhaidari; Munir Pirmohamed; Kevin Park; Jean Sathish
Currently, there is a significant rise in the development and clinical use of a unique class of pharmaceuticals termed as Biopharmaceuticals or Biologics, in the management of a range of disease conditions with, remarkable therapeutic benefits. However, there is an equally growing concern regarding development of adverse effects like immunogenicity in the form of anti-drug antibodies (ADA) production and hypersensitivity. Immunogenicity to biologics represents a significant hurdle in the continuing therapy of patients in a number of disease settings. Efforts focussed on the identification of factors that contribute towards the onset of immunogenic response to biologics have led to reductions in the incidence of immunogenicity. An in-depth understanding of the cellular and molecular mechanism underpinning immunogenic responses will likely improve the safety profile of biologics. This review addresses the mechanistic basis of ADA generation to biologics, with emphasis on the role of antigen processing and presentation in this process. The article also addresses the potential contribution of complement system in augmenting or modulating this response. Identifying specific factors that influences processing and presentation of biologic-derived antigens in different genotype and disease background may offer additional options for intervention in the immunogenic process and consequently, the management of immunogenicity to biologics.
Journal of Biological Chemistry | 2012
Han Xian Aw Yeang; Junnat Hamdam; Laith M. A. Al-Huseini; Swaminathan Sethu; Laiche Djouhri; Joanne Walsh; Neil R. Kitteringham; B. Kevin Park; Christopher E. Goldring; Jean Sathish
Background: Nrf2 has been implicated in regulating immune cell signaling and function. Results: Nrf2-deficient murine DCs exhibit enhanced maturation phenotype, increased ROS levels with dysregulation of antigen uptake capabilities, and altered intracellular signaling. Conclusion: Nrf2 regulates DC intracellular redox and immune function. Significance: Defining the role of Nrf2 in DC biology underpins development of potential Nrf2 targeted immunotherapeutics. Dendritic cells (DCs) are critical mediators of immunity and immune tolerance by orchestrating multiple aspects of T cell activation and function. Immature DCs (iDCs) expressing low levels of co-stimulatory receptors are highly efficient at antigen capture but are poor activators of T cells. Maturation of DCs is associated with increased expression of co-stimulatory molecules. Co-stimulatory receptor gene expression is regulated by intracellular redox, NF-κB, and MAPK pathways and by histone deacetylase (HDAC) activity. The transcription factor, Nrf2, is important for maintaining intracellular glutathione (GSH) levels and redox homeostasis and has been implicated in modulating DC co-stimulatory receptor expression. It is unclear whether Nrf2 mediates this effect by GSH-dependent mechanisms and whether it influences DC signaling pathways. Using bone marrow-derived iDCs from Nrf2+/+ and Nrf2−/− mice, we demonstrate that Nrf2−/− iDCs have lower basal GSH levels, enhanced co-stimulatory receptor expression, impaired phagocytic functions, and increased antigen-specific CD8 T cell stimulation capacity. Interestingly, lowering GSH levels in Nrf2+/+ iDCs did not recapitulate the Nrf2−/− iDC phenotype. Loss of Nrf2 resulted in elevated basal levels of reactive oxygen species but did not affect basal NF-κB activity or p38 MAPK phosphorylation. Using pharmacological inhibitors, we demonstrate that enhanced co-stimulatory receptor phenotype of Nrf2−/− iDC does not require ERK activity but is dependent on HDAC activity, indicating a potential interaction between Nrf2 function and HDAC. These results suggest that Nrf2 activity is required to counter rises in intracellular reactive oxygen species and to regulate pathways that control DC co-stimulatory receptor expression.
Journal of Immunology | 2010
Ayman Elsheikh; Sidonie N. Lavergne; J. Luis Castrejon; John Farrell; Hai-Yi Wang; Jean Sathish; Werner J. Pichler; B. Kevin Park; Dean J. Naisbitt
Recognition of drugs by immune cells is usually explained by the hapten model, which states that endogenous metabolites bind irreversibly to protein to stimulate immune cells. Synthetic metabolites interact directly with protein-generating antigenic determinants for T cells; however, experimental evidence relating intracellular metabolism in immune cells and the generation of physiologically relevant Ags to functional immune responses is lacking. The aim of this study was to develop an integrated approach using animal and human experimental systems to characterize sulfamethoxazole (SMX) metabolism-derived antigenic protein adduct formation in immune cells and define the relationship among adduct formation, cell death, costimulatory signaling, and stimulation of a T cell response. Formation of SMX-derived adducts in APCs was dose and time dependent, detectable at nontoxic concentrations, and dependent on drug-metabolizing enzyme activity. Adduct formation above a threshold induced necrotic cell death, dendritic cell costimulatory molecule expression, and cytokine secretion. APCs cultured with SMX for 16 h, the time needed for drug metabolism, stimulated T cells from sensitized mice and lymphocytes and T cell clones from allergic patients. Enzyme inhibition decreased SMX-derived protein adduct formation and the T cell response. Dendritic cells cultured with SMX and adoptively transferred to recipient mice initiated an immune response; however, T cells were stimulated with adducts derived from SMX metabolism in APCs, not the parent drug. This study shows that APCs metabolize SMX; subsequent protein binding generates a functional T cell Ag. Adduct formation above a threshold stimulates cell death, which provides a maturation signal for dendritic cells.
Journal of Biological Chemistry | 2013
Laith M. A. Al-Huseini; Han Xian Aw Yeang; Swaminathan Sethu; Naif Alhumeed; Junnat Hamdam; Yulia Tingle; Laiche Djouhri; Neil R. Kitteringham; B. Kevin Park; Christopher E. Goldring; Jean Sathish
Background: Nrf2 is required for normal dendritic cell immune functions. Results: Loss of Nrf2 alters DC function and results in hyperphosphorylation of CREB/ATF1 transcription factors that are responsive to p38 MAPK inhibition. Conclusion: The p38 MAPK-CREB/ATF1 axis contributes to Nrf2-mediated regulation of DC function. Significance: Defining the relevance of p38-CREB/ATF1 in Nrf2 signaling expands understanding of DC biology. Nrf2 is a redox-responsive transcription factor that has been implicated in the regulation of DC immune function. Loss of Nrf2 results in increased co-stimulatory molecule expression, enhanced T cell stimulatory capacity, and increased reactive oxygen species (ROS) levels in murine immature DCs (iDCs). It is unknown whether altered immune function of Nrf2-deficient DCs (Nrf2−/− iDCs) is due to elevated ROS levels. Furthermore, it is unclear which intracellular signaling pathways are involved in Nrf2-mediated regulation of DC function. Using antioxidant vitamins to reset ROS levels in Nrf2−/− iDCs, we show that elevated ROS is not responsible for the altered phenotype and function of these DCs. Pharmacological inhibitors were used to explore the role of key MAPKs in mediating the altered phenotype and function in Nrf2−/− iDCs. We demonstrate that the increased co-stimulatory molecule expression (MHC II and CD86) and antigen-specific T cell activation capacity observed in Nrf2−/− iDCs was reversed by inhibition of p38 MAPK but not JNK. Importantly, we provide evidence for increased phosphorylation of cAMP-responsive element binding protein (CREB) and activating transcription factor 1 (ATF1), transcription factors that are downstream of p38 MAPK. The increased phosphorylation of CREB/ATF1 in Nrf2−/− iDCs was sensitive to p38 MAPK inhibition. We also show data to implicate heme oxygenase-1 as a potential molecular link between Nrf2 and CREB/ATF1. These results indicate that dysregulation of p38 MAPK-CREB/ATF1 signaling axis underlies the altered function and phenotype in Nrf2-deficient DCs. Our findings provide new insights into the mechanisms by which Nrf2 mediates regulation of DC function.
Journal of Biological Chemistry | 2014
Laith M. A. Al-Huseini; Han Xian Aw Yeang; Junnat Hamdam; Swaminathan Sethu; Naif Alhumeed; Wai Wong; Jean Sathish
Background: HO-1 contributes to redox homeostasis and regulation of immature dendritic cell (DC) phenotype. Results: HO-1 inhibition results in increased ROS, activation of p38 MAPK-CREB/ATF1 pathway, and dysregulation of DC phenotype and function. Conclusion: HO-1 influences DC function through effects on p38 MAPK-CREB/ATF1 signaling pathway. Significance: This study provides new insights into the molecular pathways influenced by HO-1 in DCs. Dendritic cells (DCs) are critical for the initiation of immune responses including activation of CD8 T cells. Intracellular reactive oxygen species (ROS) levels influence DC maturation and function. Intracellular heme, a product of catabolism of heme-containing metalloproteins, is a key inducer of ROS. Intracellular heme levels are regulated by heme oxygenase-1 (HO-1), which catalyzes the degradation of heme. Heme oxygenase-1 has been implicated in regulating DC maturation; however, its role in other DC functions is unclear. Furthermore, the signaling pathways modulated by HO-1 in DCs are unknown. In this study, we demonstrate that inhibition of HO-1 activity in murine bone marrow-derived immature DCs (iDCs) resulted in DCs with raised intracellular ROS levels, a mature phenotype, impaired phagocytic and endocytic function, and increased capacity to stimulate antigen-specific CD8 T cells. Interestingly, our results reveal that the increased ROS levels following HO-1 inhibition did not underlie the changes in phenotype and functions observed in these iDCs. Importantly, we show that the p38 mitogen-activated protein kinase (p38 MAPK), cAMP-responsive element binding protein (CREB), and activating transcription factor 1 (ATF1) pathway is involved in the mediation of the phenotypic and functional changes arising from HO-1 inhibition. Furthermore, up-regulation of HO-1 activity rendered iDCs refractory to lipopolysaccharide-induced activation of p38 MAPK-CREB/ATF1 pathway and DC maturation. Finally, we demonstrate that treatment of iDC with the HO-1 substrate, heme, recapitulates the effects that result from HO-1 inhibition. Based on these results, we conclude that HO-1 regulates DC maturation and function by modulating the p38 MAPK-CREB/ATF1 signaling axis.